Les cartes sont des objets combinatoires apparaissant en physique comme discrétisation naturelle des surfaces aléatoires employées pour la gravité quantique bidimensionnelle ou la théorie des cordes, ainsi que dans les modèles de matrices. Après rappel de ces relations, nous établissons des correspondances entre diverses classes de cartes et d'arbres, autres objets combinatoires de structure simple. Un premier intérêt mathématique de ces constructions est de donner des preuves bijectives, élémentaires et rigoureuses, de plusieurs résultats d'énumération de cartes. Par ailleurs, nous accédons ainsi à une information fine sur la géométrie intrinsèque des cartes, conduisant à des résultats analytiques exacts grâce à une propriété inattendue d'intégrabilité. Nous abordons enfin la question de l'existence d'une limite continue universelle.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010651 |
Date | 10 June 2005 |
Creators | Bouttier, Jérémie |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds