Dans cette thèse on étudie la géométrie systolique des variétés de Bieberbach. La \emph{systole} d'une variété riemannienne compacte et non simplement connexe $(M^n,g)$ est l'infimum des longueurs des courbes fermées non contractiles; le \emph{rapport systolique} est le quotient $(\mathrm{systole})^n/\mathrm{volume}$. Un résultat fondamental de Gromov assure que si $M^n$ est essentielle, il existe une constante $c(M)$ strictement positive telle que, pour toute métrique $g$ sur $M^n$: $Vol(M,g) \geq c(M) Sys(M,g)^n$. Les surfaces compactes autres que $S^2$ sont essentielles, et le théorème de Gromov est une généralisation profonde des mêmes résultats pour le tore $T^2$ (C. Loewner), pour le plan projectif (M. Pu) et pour la bouteille de Klein (C. Bavard). Pour ces variétés la constante $c(M)$ est bien connu mais en dimension supérieure, on ne connait pratiquement rien en dehors de l'existence de cette constante. Nous nous intéressons aux variétés de Bieberbach de dimension 3, c'est à dire aux variétés compactes de dimension 3 qui portent une métrique riemannienne plate, qui ne sont pas des tores et démontrons que les métriques plates ne sont pas optimales pour le rapport systolique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00439914 |
Date | 13 May 2009 |
Creators | Elmir, Chady |
Publisher | Université Montpellier II - Sciences et Techniques du Languedoc |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds