Dans cette thèse nous présenterons un travail relatif à la théorie des (a,b)-modules. Nous nous intéresserons en particulier à trois problèmes liés à la dualité des (a,b)-modules: l'existence de formes hermitiennes, la symétrie des suites de Jordan-Hölder et la relation avec les "higher residue pairings" de K. Saito. Dans la première partie on étudie les équivalents des concepts de conjugué, adjoint et de forme hermitienne dans le contexte des (a,b)-modules. Dans notre analyse des formes hermitiennes nous sont amenés à définir la notion de (a,b)-module indécomposable et à montrer l'analogue du théorème de Krull-Schmidt dans la théorie des modules sur un anneau commutatif. On montre par la suite l'existence de formes ou bien hermitiennes ou anti-hermitiennes sur les modules réguliers indécomposables auto-adjoints et on donne un exemple non trivial de rang 4 admettant uniquement une forme anti-hermitienne. Suit une étude des suites de Jordan-Hölder de (a,b)-modules auto-adjoints. L'intérêt se porte en particulier sur les suites de Jordan-Hölder dites elles aussi auto-adjointes et on en montre l'existence, pour tout (a,b)-module régulier auto-adjoint. En guise de conclusion on applique les résultats obtenus aux (a,b)-modules associés à une hypersurface à singularité isolée, c'est-à-dire au complété formel de son module de Brieskorn. On montre que le symétrisé de l'isomorphisme avec l'adjoint donné par R. Belgrade satisfait aux axiomes donnés par K. Saito dans la présentation de ses "higher residue pairings" / In this thesis we present a work regarding the theory of (a,b)-modules. We are particularly interested in three problems related to the duality of (a,b)-modules: the existence of hermitian forms, the symmetry of Jordan-Hölder composition series and the relation with the "higher residue pairings" of K. Saito. In the first part we study the concepts of conjugate, adjoint and hermitian form in the theory of (a,b)-modules. Our analysis of hermitian forms brings us to the proof of the analogue of the Krull-Schmidt theorem in the theory of modules over a commutative ring. We prove afterwards the existence of either a hermitian or an anti-hermitian form on regular indecomposable self-adjoint (a,b)-modules and we give a non trivial rank 4 example of module that admits only an anti-hermitian form. Follows a study of the Jordan-Hölder composition series of self-adjoint (a,b)-modules. We are in particular interested in a kind of composition series also called self-ajoint, whose existence we prove for every regular self-adjoint (a,b)-module. In the last part the results obtained are applied to (a,b)-modules associated to a hyper-surface with an isolated singularity, i.e. to the formal completion of the Brieskorn module. We show that a symmetrized form of the isomorphism with the adjoint given by R. Belgrade satisfies the axioms given by Saito for his "higher residue pairings"
Identifer | oai:union.ndltd.org:theses.fr/2009NAN10143 |
Date | 10 December 2009 |
Creators | Karwasz, Piotr Przemyslaw |
Contributors | Nancy 1, Barlet, Daniel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds