Les travaux présentés dans cette thèse relèvent de l'étude des méthodes de classification linéaires, c'est à dire l'étude de méthodes ayant pour but la catégorisation de données en différents groupes à partir d'un jeu d'exemples, préalablement étiquetés, disponible en amont et appelés ensemble d'apprentissage. En pratique, l'acquisition d'un tel ensemble d'apprentissage peut être difficile et/ou couteux, la catégorisation d'un exemple étant de fait plus ardu que l'obtention de dudit exemple. Cette disparité entre la disponibilité des données et notre capacité à constituer un ensemble d'apprentissage étiqueté a été un des problèmes centraux de l'apprentissage automatique et ce manuscrit s’intéresse à deux solutions usuellement considérées pour contourner ce problème : l'apprentissage en présence de données bruitées et l'apprentissage actif. / The works presented in this thesis fall within the general framework of linear classification, that is the problem of categorizing data into two or more classes based on on a training set of labelled data. In practice though acquiring labeled examples might prove challenging and/or costly as data are inherently easier to obtain than to label. Dealing with label scarceness have been a motivational goal in the machine learning literature and this work discuss two settings related to this problem: learning in the presence of noise and active learning.
Identifer | oai:union.ndltd.org:theses.fr/2016AIXM4025 |
Date | 04 July 2016 |
Creators | Louche, Ugo |
Contributors | Aix-Marseille, Ralaivola, Liva |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds