Latrophilin, alternatively named calcium-independent receptor of α-latrotoxin (CIRL), resembles a prototype of the adhesion class G-protein coupled receptors (GPCRs). Initially identified as a high-affinity receptor for α-latrotoxin, a component of the black widow spider, latrophilins are now associated with various distinct functions, such as synaptic exocytosis, tissue polarity and fertility (Tobaben et al., 2002; Langenhan et al., 2009; Promel et al., 2012). Despite these exploratory efforts the precise subcellular localisation as well as the endogenous ligand of CIRL still remains elusive. In this work genetic experiments, imaging approaches and behavioural studies have been used to unravel the localisation and physiological function of the latrophilin homolog dCirl in Drosophila melanogaster. Containing only one latrophilin homolog together with its genetic accessibility and well-established transgenic approaches, Drosophila seemed an ideally suited model organism. The present study showed that dCirl is widely expressed in the larval central nervous system including moto- and sensory neurons. Further, this work revealed that removal of the latrophilin homolog does not greatly affect synaptic transmission but it seems that aspects of the postsynaptic structural layout are controlled by dCIRL in the fruit fly. Additionally, dCirl expression at the transcriptional level was confirmed in larval and adult chordotonal organs, specialised mechanosensors implicated in proprioception (Eberl, 1999). Expression of dCIRL at the protein level could not yet been confirmed in moto- and sensory neurons likely due to low endogenous expression. However, behavioural studies using dCirl knockout mutant larvae indicated a putative mechanosensory function of dCIRL regarding touch sensitivity and locomotion behaviour.
The second part of this thesis presents a strategy to examine interactions between several presynaptic proteins in living cells. The attempt described in this work is based on the discovery that GFP when split into two non-fluorescent fragments can form a fluorescent complex. The association of the fragments can be facilitated by fusing them to two proteins that interact with each other. Therefore, the split GFP method enables direct visualization of synaptic protein interactions in living cells. In initial experiments I could show that full length reporter protein fusions with n-Synaptobrevin (n-Syb), Synaptotagmin (Syt) and Syntaxin (Syx) allow expression in Drosophila and confirmed that fusion to either end of each synaptic protein did not impair expression or influence the viability of transgenic flies. Further, transgenes containing protein fusions of Syx, Syt, and n-Syb with split GFP fragments were established in previous studies (Gehring, 2010). The present work characterises the interaction of these protein fusions during different stages of synaptic vesicle turnover at active zones such as synaptic vesicle docking at the presynaptic membrane and vesicle fusion. These results suggest that the spGFP assay seems only partly suitable for resolving fast and transient protein-protein interactions at larval Drosophila active zones in vivo. / Latrophilin, auch als Calcium-unabhängiger Rezeptor für α-Latrotoxin (CIRL) bezeichnet, repräsentiert einen Prototyp der Adhäsions G-Protein gekoppelten Rezeptorklasse. Ursprünglich als hoch-affiner Rezeptor für α-Latrotoxin entdeckt, werden Latrophiline heute mit zahlreichen verschiedenen Funktionen, wie synaptischer Exozytose, Gewebepolarität und Fertilität assoziiert (Tobaben et al., 2002; Langenhan et al., 2009; Promel et al., 2012). Trotz dieser Fortschritte sind die genaue subzelluläre Lokalisation sowie der endogene Ligand noch weitgehend unbekannt. Diese Studie verwendet genetische Ansätze, bildgebende Verfahren und Verhaltensstudien, um die Lokalisation und physiologische Funktion des Latrophilinhomologs dCirl in Drosophila melanogaster aufzuklären. Die Tatsache, dass Drosophila nur ein einziges Latrophilin Homolog besitzt, zusammen mit den genetischen Möglichkeiten und den sehr gut etablierten transgenen Methoden, machen die Fruchtfliege zu einem idealen Modellorganismus. Die erhobenen Daten belegen, dass dCirl verstärkt im larvalen Nervensystem, einschließlich motorischer und sensorischer Neurone, exprimiert wird. Weiterhin konnte gezeigt werden, dass in dCirl Knockout-Mutanten die basale synaptische Transmission unverändert ist, vermutlich aber Teile der postsynaptischen Struktur durch dCIRL in der Fruchtfliege kontrolliert werden. Zusätzlich konnte nachgewiesen werden, dass dCirl auf Transkriptionsebene in den larvalen und adulten Chordotonalorganen exprimiert wird, spezifische Mechanosensoren, die an der Propriozeption beteiligt sind (Eberl, 1999). Die Expression von dCIRL auf Proteinebene in motorischen und sensorischen Neuronen konnte aufgrund niedriger endogener Expressionslevel noch nicht verifiziert werden. Allerdings deuten Verhaltensstudien, die Berührungsempfindlichkeit und Lokomotion untersuchen, auf eine mögliche mechanosensorische Funktion von dCIRL in den Larven von Drosophila hin.
Der zweite Teil dieser Arbeit zeigt eine Strategie auf, die es ermöglicht, das Zusammenspiel verschiedener präsynaptischer Proteine in vivo zu untersuchen. Die hier beschriebene Methode basiert auf der Entdeckung, dass sich zwei nicht-fluoreszierende Fragmente des grün leuchtenden Proteins (GFP), zu einem fluoreszierenden Komplex zusammenlagern können. Diese geteilten GFP-Fragmente (split-GFPs) werden mit zwei unterschiedlichen Proteinen fusioniert, die miteinander interagieren. Die split-GFP Methode ermöglicht so eine direkte Visualisierung von Protein-Protein-Interaktionen in lebenden Zellen. In ersten Experimenten konnte ich zeigen, dass Synaptobrevin (n-Syb), Synaptotagmin (Syt) und Syntaxin (Syx), die mit vollständigen Fluorophoren markiert wurden, für die Expression in Drosophila geeignet sind und bestätigen, dass sowohl die N-terminale als auch die C-terminale Proteinfusion möglich ist. Zudem konnte durch diese Versuche die Überlebensfähigkeit der transgenen Fliegen überprüft werden. In vorangegangenen Studien wurden Transgene hergestellt, die Proteinfusionen von n-Syb, Syt und Syx mit split-GFP Fragmenten enthalten (Gehring, 2010). Die vorliegende Arbeit charakterisiert die Wechselwirkung dieser Proteinfusionen während unterschiedlicher Stufen der synaptischen Vesikelfreisetzung an der aktiven Zone, wie beispielsweise dem Vesikel-docking an der präsynaptischen Membran und der Vesikelfusion. Die Ergebnisse dieser Studie deuten darauf hin, dass die split-GFP Technik nur bedingt geeignet ist um schnelle und transiente Protein-Protein Interaktionen an der larvalen aktiven Zone von Drosophila in vivo darzustellen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:10106 |
Date | January 2017 |
Creators | Gehring, Jennifer |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds