Return to search

Aerosol pollution from gas flaring emissions in the Niger Delta region of West Africa

Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. The rates of emission of pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. In this work, new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH) are derived for a specified subset of flame condition. The air pollution dispersion model, ADMS5, is used to simulate the dispersion of pollutants from gas-flaring stacks in the Niger delta. Fuel composition and flare size play significant role in the dispersion pattern and ground-level concentrations of pollutants. To assess the significance of gas-flaring to atmospheric aerosol loading, AERONET aerosol signals are clustered using trajectory analysis to identify dominant aerosol sources at the Ilorin site (4.34o E, 8.32o N) in West Africa. From 7-day back-trajectory calculations over a 10-year period calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model, which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF), dominant sources are identified, using literature classifications: desert dust, biomass burning, and urban-industrial. Using a combination of synoptic trajectories and aerosol optical properties, a fourth source is distinguished: that due to gas flaring. An estimation of the relative impact of these different aerosol sources on the overall radiative forcing at the Ilorin AERONET site was the carried out.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:699183
Date January 2016
CreatorsFawole, Olusegun Gabriel
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7134/

Page generated in 0.0014 seconds