En raison des forts gradients de dose générés par les interactions des particules avec la matière, les traitements par hadronthérapie nécessitent un contrôle très précis de la dose délivrée au patient. Les codes Monte Carlo représentent des outils indispensables dans la validation des systèmes de planification de traitement utilisé en clinique. Nous nous intéressons dans cette thèse au calcul de la dose physique à l'aide des simulations Monte Carlo Geant4/Gate. Nous étudions l'ajustement de plusieurs paramètres qui peuvent influencer la précision du calcul de dose requise en clinique (2%, 2mm) pour un faisceau d'ions carbone de 300 MeV/u dans l'eau. Ces paramètres sont : le seuil de production des particules secondaires et la taille maximale d'un segment de la trace de particule. Les critères de tolérance sur la valeur et la localisation de la dose sont fixés de manière à avoir le meilleur compromis en termes de distribution spatiale et de temps de calcul. Nous proposons ici des paramètres permettant d'atteindre ces critères de précision. Dans la deuxième partie du travail, nous étudions la réponse des films radiochromiques MDv2-55 pour le contrôle qualité des faisceaux d'ions carbone et protons. Nous avons en particulier observé et étudié l'effet de saturation de ces films dosimétriques pour les irradiations à TEL élevés (≥ 20 KeV/µm) dans des milieux homogènes et hétérogènes. Cet effet est dû à la forte densité d'ionisation autour de la trace de particule. Nous avons proposé et développé un modèle appelé « RADIS RAdiochromic films Dosimetry for Ions using Simulations » qui permet de prédire la réponse de ces films avec la prise en compte de cet effet de saturation. Ce modèle est basé sur la réponse des films en photons et la saturation des films à des dépôts d'énergies linéïques élevés calculée par Monte Carlo. Plusieurs types de faisceaux ont été étudiés : ions carbone, protons et photons à différentes énergies. Ces expérimentations ont été menées au Grand Accélérateur National d'Ions Lourds (GANIL), au Centre de protonthérapie d'Orsay (CPO), au Centre A. Lacassagne (CAL) et au Centre Léon Bérard (CLB). A l'aide du modèle, nous pouvons ainsi reproduire la densité optique des films le long du profil de Bragg pour tous les faisceaux avec une précision meilleure que 2%. / Because of the increase in dose at the end of the range of ions, dose delivery during patient treatment with hadrontherapy should be controlled with high precision. Monte Carlo codes are now considered mandatory for validation of clinical treatment planing and as a new tool for dosimetry of ion beams. In this work, we aimed to calculate the absorbed dose using Monte Carlo simulation Geant4/Gate. The ejffect on the dose calculation accuracy of dierent Geant4 parameters has been studied for mono-energetic carbon ion beams of 300 MeV/u in water. The parameters are : the production threshold of secandary particules and the maximum step limiter of the particle track. Tolerated criterion were choosen to meet the precision required in radiotherapy (2%, 2mm) and to obtain the best compromise on dose distribution and computational time.We propose here the values of parameters in order to satisfy the precision required. In the second part of this work, we will study the response of radiochromic lms MD-v2-55 for quality control in proton and carbon ion beams. We have particularly observed and studie the quenching effect of dosimetric lms for high LET (20 KeV/m) irradiations in homogeneous and heterogeneous medium. This eject is due to the high ionization density around the track of the particule. We have developped a method to predict the response of radiochromic lms taking into account the saturation effect. This model is called the RADIS model forRAdiochromic films. Dosimetry for Ions using Simulations". It is based on the response of lms under photon irradiations and the saturation of lms due to high linear energy deposit calculated by Monte Carlo. Four beams were used in this study and aimed to validate the model for hadrontherapy applications : carbon ions, protons and photons at different energies. Experiments were performed at Grand Accélérateur National d'Ions Lourds (GANIL), Proton therpay center of Orsay (CPO), A. Lacassagne proton center (CAL) and Leon Berard cancer center (CLB). The model showed very good agreement between the measured and calculated optical density with an error less than 2%.
Identifer | oai:union.ndltd.org:theses.fr/2010LYO10088 |
Date | 25 June 2010 |
Creators | Zahra, Nabil |
Contributors | Lyon 1, Lautesse, Philippe, Sarrut, David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0038 seconds