Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-07-22T13:34:06Z
No. of bitstreams: 1
2016_LumenaPauladeJesusBorges.pdf: 1020349 bytes, checksum: ccdbb2f9573ac7e8a5dfab408b8cdbf9 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-08-19T21:12:40Z (GMT) No. of bitstreams: 1
2016_LumenaPauladeJesusBorges.pdf: 1020349 bytes, checksum: ccdbb2f9573ac7e8a5dfab408b8cdbf9 (MD5) / Made available in DSpace on 2016-08-19T21:12:40Z (GMT). No. of bitstreams: 1
2016_LumenaPauladeJesusBorges.pdf: 1020349 bytes, checksum: ccdbb2f9573ac7e8a5dfab408b8cdbf9 (MD5) / Os objetos de estudo nesta dissertação são as curvas de interseção entre duas superfícies no espaço Euclidiano e no espaço de Lorentz-Minkowski. As interseções podem ser do tipo transversal ou tangencial. As superfícies podem ser paramétricas ou implícitas e, portanto, os casos estudados são Paramétrica-Paramétrica, Paramétrica-Implícita e Implícita-Implícita. Quando as superfícies estão no espaço Euclidiano, o objetivo principal é apresentar algoritmos para se obter propriedades geométricas da curva de interseção, tais como curvatura, torção e vetor tangente, em cada caso das interseções. O propósito para o espaço de Lorentz-Minkowski é similar, no qual considera-se curvas de interseção transversal entre duas superfícies tipo espaço, bem como entre duas superfícies tipo tempo, apresentando-se expressões para a curvatura, torção e vetor tangente. Quando as superfícies são tipo espaço, a curva de interseção é também tipo espaço. Quando elas são tipo tempo, a curva pode ser tipo espaço, tipo tempo ou tipo luz. Uma análise para os casos tipo espaço e tipo tempo é feita neste trabalho. Além disso, para superfícies tipo espaço, são dadas condições para que a curva de interseção seja uma geodésica ou uma linha de curvatura das duas superfícies. Exemplos que ilustram esta teoria são acrescentados no final. ________________________________________________________________________________________________ ABSTRACT / The objects of study in this dissertation are the intersection curves of two surfaces in Euclidean space and Lorentz-Minkowski space. Intersections can be of transversal or tangential type. Surfaces can be parametric or implicit and, therefore, the cases studied are Parametric-Parametric, Parametric-Implicit and Implicit-Implicit. When the surfaces are in Euclidean space, the main objective is presenting algorithms to obtain geometrical properties of the intersection curve, such as curvature, torsion and tangent vector, in each case of the intersections. The purpose for Lorentz-Minkowski space is similar, in which is considered transversal intersection curves between two spacelike surfaces as well as between two timelike surfaces, presenting expressions for the curvature, torsion and tangent vector. When the surfaces are spacelike, the intersection curve is spacelike. When they are timelike, the curve can be spacelike, timelike or lightlike. An analysis for cases spacelike and timelike is considered in this work. Furthermore, for spacelike surfaces, conditions are given so that the intersection is a geodesic curve or line of curvature of both surfaces. Examples illustrating this theory are added at the end.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/21285 |
Date | 20 June 2016 |
Creators | Borges, Lumena Paula de Jesus |
Contributors | Rodrigues, Luciana Maria Dias de Ávila |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB |
Rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data., info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds