• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 9
  • 8
  • 8
  • 8
  • 6
  • Tagged with
  • 44
  • 44
  • 25
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hipersuperfícies conformemente planas em R4 e superfícies planas helicoidais em H3

Santos, João Paulo dos January 2012 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. / Submitted by Alaíde Gonçalves dos Santos (alaide@unb.br) on 2013-04-25T15:40:43Z No. of bitstreams: 1 2012_JoãoPaulodosSantos.pdf: 936485 bytes, checksum: 6d51bb930ec3fcaafb2219d3ae320f97 (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-04-26T13:33:40Z (GMT) No. of bitstreams: 1 2012_JoãoPaulodosSantos.pdf: 936485 bytes, checksum: 6d51bb930ec3fcaafb2219d3ae320f97 (MD5) / Made available in DSpace on 2013-04-26T13:33:40Z (GMT). No. of bitstreams: 1 2012_JoãoPaulodosSantos.pdf: 936485 bytes, checksum: 6d51bb930ec3fcaafb2219d3ae320f97 (MD5) / Estudamos classes de hipersuperfícies conformemente planas associadas a soluções invariantes por um grupo de simetria das equações de Lamé com a condição de Guichard. Mostramos que os grupos de simetria deste sistema de equações diferenciais são dados por translações e dilatações nas variáveis independentes e dilatações nas variáveis dependentes. Além disso, obtemos as soluções invariantes pelo grupo de translação. A partir dessas soluções, usamos os resultados de Hertrich-Jeromin para obter as hipersuperfícies conformemente planas e descrever as redes de Guichard correspondentes. Obtemos parametrizações explícitas de hipersuperfícies conformemente planas geradas a partir de superfícies planas no espaço hiperbólico H3 e na esfera S3. Mais ainda, mostramos que associada a uma solução dada em termos de funções de Jacobi elípticas existe uma nova classe de hipersuperfícies conformemente planas. Quanto às redes de Guichard correspondentes, mostramos que suas superfícies coordenadas tem curvatura Gaussiana constante, e a soma das três curvaturas é igual a zero. Além disso, as redes de Guichard são folheadas por planos com curvatura Gaussiana nula e curvatura média constante. Mostramos que a superfície plana em H3 possui primeira forma fundamental determinada por uma função linear. Em geral, uma superfície plana em H3 é determinada por uma função harmônica, assim como por dados meromorfos. Uma classificação completa de superfícies planas helicoidais em H3 é obtida em termos de suas aplicações de Gauss hiperbólicas e por funções harmônicas lineares. Incluímos uma família de exemplos que fornece a classificação das superfícies planas helicoidais. Mais ainda, mostramos que uma superfície plana em H3 correspondente a uma função harmônica linear é localmente congruente a uma superfície helicoidal ou ao “peach front". _______________________________________________________________________________________ ABSTRACT / We study classes of conformally flat hypersurfaces associated to solutions invariant by a symmetry group of Lamé's Equation satisfying the Guichard condition. We show that the symmetry group of such system of differential equations are given by translations and dilations in the independent variables and dilations in the dependents variables. Moreover, we obtain the solutions invariant solutions by the translation group. From these solutions, we use the results due to Hertrich-Jeromin in order to obtain the conformally flat hypersurfaces and describe the corresponding Guichard nets. We obtain explicit parametrizations of conformally flat hypersurfaces that are generated from at surfaces in the hyperbolic spaces H3 and in the sphere S3. Moreover, we show that associated to a solution, given in terms of Jacobi elliptic functions, there exists a new class of conformally flat hypersurfaces. With respect to the corresponding Guichard net, we show that their coordinate surfaces have constant Gaussian curvature, and the sum of the three curvatures is equal to zero. Moreover, the Guichard nets are foliated by at planes with constant mean curvature. We show that the at surface in H3 has its first fundamental form determined by a linear function. In general, a flat surface in the hyperbolic space H3 is determined by a harmonic function, as well as by its meromorphic data. A complete classification of the helicoidal flat fronts is given in terms of their hyperbolic Gauss maps as well as by means of linear harmonic functions. A family of examples which provides the classification of the helicoidal flat fronts is included. Moreover, it is shown that a flat surface in H3, that corresponds to a linear harmonic function, is locally congruent to a helicoidal flat front or to a “peach front".
2

Hipersuperfícies conformemente planas em formas espaciais de dimensão 4

Santos, João Paulo dos January 2009 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. / Submitted by Larissa Ferreira dos Angelos (ferreirangelos@gmail.com) on 2010-04-26T20:25:22Z No. of bitstreams: 1 2009_JoaoPaulodosSantos.pdf: 449067 bytes, checksum: 7a12e39372e1cfa866bd8b0068688457 (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2010-05-13T21:13:44Z (GMT) No. of bitstreams: 1 2009_JoaoPaulodosSantos.pdf: 449067 bytes, checksum: 7a12e39372e1cfa866bd8b0068688457 (MD5) / Made available in DSpace on 2010-05-13T21:13:44Z (GMT). No. of bitstreams: 1 2009_JoaoPaulodosSantos.pdf: 449067 bytes, checksum: 7a12e39372e1cfa866bd8b0068688457 (MD5) Previous issue date: 2009 / Neste trabalho apresentamos um estudo de hipersuperfícies conformemente planas baseado em um trabalho de Hertrich-Jeromin, onde são obtidas condições necessárias e suficientes para que tenhamos uma hipersuperfície conformemente plana em uma forma espacial de dimensão quatro. Como consequência temos a relação entre essas hipersuperfícies e um sistema triplamente ortogonal de superfícies de R3 chamado rede de Guichard. ________________________________________________________________________________________ ABSTRACT / In this work we present a study on conformally at hypersurfaces which is based on a Hertrich-Jeromin's article, where a characterization for conformally at hypersurfaces in a four dimensional space form is obtained. As a consequence we have a relationship between these hypersurfaces and a triply orthogonal system of surfaces in R3, called Guichard Net.
3

O problema de Björling para superfícies máximas no espaço de Lorentz-Minkowski

Silva, Tarcísio Castro 25 February 2010 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2010. / Submitted by Washington da Silva Chagas (washington@bce.unb.br) on 2011-04-06T00:18:19Z No. of bitstreams: 1 2010_TarcisioCastroSilva.pdf: 2203742 bytes, checksum: 4e701fce776105f40fe65d12850e2906 (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2011-04-06T01:21:10Z (GMT) No. of bitstreams: 1 2010_TarcisioCastroSilva.pdf: 2203742 bytes, checksum: 4e701fce776105f40fe65d12850e2906 (MD5) / Made available in DSpace on 2011-04-06T01:21:10Z (GMT). No. of bitstreams: 1 2010_TarcisioCastroSilva.pdf: 2203742 bytes, checksum: 4e701fce776105f40fe65d12850e2906 (MD5) / Baseado em um trabalho de Alías-Chaves-Mira [6], apresentamos um estudo local de superfícies máximas no espaço de Lorentz-Minkowski R31 com base em uma fórmula de representação complexa para esta classe de superfícies. Como uma aplicação, resolvemos um certo tipo de problema de Björling no espaço de Lorentz-Minkowski e estabelecemos, a partir desta representação complexa, uma maneira de introduzir exemplos e classificar superfícies máximas com interessantes propriedades geométricas. _________________________________________________________________________________ ABSTRACT / Based on a Al´ıas-Chaves-Mira’s article [6], in this work we present a local study of maximal surfaces in the Lorentz-Minkowski R3 1 space, based on a complex representation formula for this class of surfaces. As an aplication we solve a certain Bj¨orling-type problem in Lorentz-Minkowski space and we established from this complex representation, a way of introducing examples and classify maximal surfaces with interesting geometric properties.
4

Hipersuperfícies isoparamétricas de Laguerre no espaço euclidiano

Cezana, Miguel Júnior 01 March 2013 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013. / Submitted by Jaqueline Ferreira de Souza (jaquefs.braz@gmail.com) on 2014-01-09T11:21:53Z No. of bitstreams: 1 2013_MiguelJuniorCezana_Parcial.pdf: 187410 bytes, checksum: 357715b9cfe728c58cb2ae5ff9540729 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2014-01-09T13:00:19Z (GMT) No. of bitstreams: 1 2013_MiguelJuniorCezana_Parcial.pdf: 187410 bytes, checksum: 357715b9cfe728c58cb2ae5ff9540729 (MD5) / Made available in DSpace on 2014-01-09T13:00:19Z (GMT). No. of bitstreams: 1 2013_MiguelJuniorCezana_Parcial.pdf: 187410 bytes, checksum: 357715b9cfe728c58cb2ae5ff9540729 (MD5) / Mostramos que hipersuperfícies isoparamétricas de Laguerre com duas curvaturas principais distintas em Rn+1, n ≥3, são hipersuperfícies com segunda forma fundamental de Laguerre paralela. Classificamos tais hipersuperfícies. Exibimos, a menos de transformação de Laguerre, as únicas hipersuperfícies no espaço Euclidiano com segunda forma fundamental paralela, que admitem uma parametrização por linhas de curvatura. Provamos que hipersuperfícies isoparamétricas de Laguerre em Rn+1 são cíclides de Dupin ou hipersuperfícies de Dupin com curvaturas de Laguerre constante. Caracterizamos as hipersuperfícies de Dupin em Rn+1, n≥ 3, parametrizadas por linhas de curvatura e com curvaturas principais distintas que não se anulam e cujas curvaturas de Laguerre são constantes . _________________________________________________________________________________________________ ABSTRACT / We show that Laguerre isoparametric hypersurfaces with two distinct principal curvatures in Rn+1, n ≥ 3, are hypersurfaces with parallel Laguerre second fundamental form. We classify such hypersurfaces. Up to Laguerre transformations, we exhibit the only hypersurfaces in Euclidean space with parallel second fundamental form, which admit a parametrization by lines of curvature. We prove that Laguerre isoparametric hypersurfaces in Rn+1 are cyclides of Dupin or Dupin hypersurfaces with constant Laguerre curvature. For n ≥ 3, we characterize the Dupin hypersurfaces in Rn+1 parametrized by lines of curvature with distinct principal curvatures and that do not vanish and whose Laguerre curvatures are constant.
5

Hipersuperfícies de rotação auto-redutoras no espaço euclidiano

Sabino Norabuena, Javier Rúben 15 May 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2015-01-08T12:25:15Z No. of bitstreams: 1 2014_JavierRubenSabinoNorabuena.pdf: 502463 bytes, checksum: 99e1219240de83e793acba9439a8dd77 (MD5) / Approved for entry into archive by Ruthléa Nascimento(ruthleanascimento@bce.unb.br) on 2015-02-10T18:53:30Z (GMT) No. of bitstreams: 1 2014_JavierRubenSabinoNorabuena.pdf: 502463 bytes, checksum: 99e1219240de83e793acba9439a8dd77 (MD5) / Made available in DSpace on 2015-02-10T18:53:30Z (GMT). No. of bitstreams: 1 2014_JavierRubenSabinoNorabuena.pdf: 502463 bytes, checksum: 99e1219240de83e793acba9439a8dd77 (MD5) / Baseado em um artigo de Stephen J. Kleene e Niels M. Moller, apresentamos um estudo sobre a existência de uma família a um parâmetro de hipersuperfícies auto-redutoras, geradas pela rotação de curvas planas. A hipersuperfície é assintótica a um cone, suave, não compacta e de curvatura média positiva. A prova envolve análise de uma equação diferencial ordinária elíptica de segunda ordem quase linear com derivada cúbica. ________________________________________________________________________ ABSTRACT / Based on a paper of Stephen J. Kleene and Niels M. Moller, we study the existence of a 1-parameter family of non-compact smooth self-shrinker hypersurfaces ; generated by the rotation of plane curves. has positive mean curvature and it is asymptotic to a cone. The proof involves the analysis of a cubic-derivative quasi-linear elliptic secondorder ordinary diferential equation.
6

Superfícies mínimas em R3 com a métrica Euclidiana perturbada por uma rotação

Silva, Rosângela Maria da January 2008 (has links)
Tese (doutorado)—Universidade de Brasília, Departamento de Matemática, 2008. Texto parcialmente liberado pelo autor, somente Resumo. / Submitted by Diogo Trindade Fóis (diogo_fois@hotmail.com) on 2009-10-13T16:09:14Z No. of bitstreams: 1 2008_RosangelaMariaSilva_resumo.pdf: 49403 bytes, checksum: 5d299f2a22a1d647c7312d56310c9aca (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2010-02-25T21:56:09Z (GMT) No. of bitstreams: 1 2008_RosangelaMariaSilva_resumo.pdf: 49403 bytes, checksum: 5d299f2a22a1d647c7312d56310c9aca (MD5) / Made available in DSpace on 2010-02-25T21:56:09Z (GMT). No. of bitstreams: 1 2008_RosangelaMariaSilva_resumo.pdf: 49403 bytes, checksum: 5d299f2a22a1d647c7312d56310c9aca (MD5) Previous issue date: 2008 / Estudamos as superfícies mínimas em R3 com a métrica Euclidiana perturbada por uma rotação. Esse espaço de Finsler ( 3, ) é a região de R3 limitada por um cilindro de raio 1 com uma métrica de Randers. Provamos que as únicas superfícies mínimas de rotação nesse espaço são os catenóides contidos em 3 gerados pela rotação de uma catenária em torno do eixo do cilindro. Provamos que não existem superfícies mínimas de rotação em torno de qualquer eixo diferente do eixo do cilindro. Obtemos ainda s equações diferenciais parciais que caracterizam as superfícies mínimas em 3 que são gráficos de uma função. Provamos que as únicas regiões de planos que são mínimas em ( 3, ) são os discos abertos de raio 1 limitados pelos paralelos do cilindro e as faixas de planos geradas pelas interseções de 3 com os planos de R3 que contêm o eixo do cilindro. __________________________________________________________________________________________ ABSTRACT / We study minimal surfaces in R3 with the Euclidian metric perturbed by a rotation. This Finsler space ( ¯M 3, ¯ F) is the open region of R3 bounded by a cylinder with radius 1 with a Randers metric. We prove that the only minimal surfaces of rotation in this space are the catenoids contained in ¯M 3 generated by the rotation of a catenary around the axis of the cylinder. We prove that there are no minimal surfaces of rotation around any axis different from the axis of the cylinder. Moreover, we obtain the partial differential equations that characterize the minimal surfaces in ¯M 3 that are the graph of a function. We prove that the only regions of planes which are minimal in ( ¯M 3, ¯ F) are the open disks with radius 1 bounded by the parallels of the cylinder and the strips of planes generated by the intersection of ¯M 3 with the planes of R3 that contain the cylinder axis.
7

Estratégia de mapeamento em 2D de ambientes internos baseada na extração de segmentos de linhas usando sensores de ultrasom / A strategy for line-basedmapping for indoor environments using ultrasonic sensors

Ochoa Diaz, Claudia Patricia 15 July 2010 (has links)
Dissertação (mestrado)-Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2010. / Submitted by Shayane Marques Zica (marquacizh@uol.com.br) on 2011-02-23T20:50:44Z No. of bitstreams: 1 2010_ClaudiaPatriciaOchoaDiaz.pdf: 3800265 bytes, checksum: c50f9b1a24ef3835e23621bca8fcd203 (MD5) / Approved for entry into archive by Daniel Ribeiro(daniel@bce.unb.br) on 2011-03-31T01:05:03Z (GMT) No. of bitstreams: 1 2010_ClaudiaPatriciaOchoaDiaz.pdf: 3800265 bytes, checksum: c50f9b1a24ef3835e23621bca8fcd203 (MD5) / Made available in DSpace on 2011-03-31T01:05:03Z (GMT). No. of bitstreams: 1 2010_ClaudiaPatriciaOchoaDiaz.pdf: 3800265 bytes, checksum: c50f9b1a24ef3835e23621bca8fcd203 (MD5) / Entre as diferentes features existentes, o segmento de linha é uma das primitivas geométricas de mais fácil representação para descrever ambientes internos. Vários trabalhos recentes que propõem diferentes estratégias de mapeamento baseados na detecção de segmentos de linhas utilizam medições provenientes de sensores como lasers e sensores de visão, sendo menos comum o uso de sensores de ultrassom para estes propósitos. Este trabalho apresenta uma estratégia de mapeamento baseado em segmentos de linhas usando a informação fornecida por um grupo de sensores de ultrassom. A estratégia consiste basicamente em dois processos, a extração das linhas e o processo de combinação ou merging. Na etapa de extração, é implementado um algoritmo baseado na abordagem Incremental para a segmentação de linhas. A saída deste processo está composta pelas diferentes linhas estimadas a partir do conjunto de dados fornecidos pelos sonares. Já a etapa de merging tem como objetivo agrupar as diferentes linhas que representam a mesma estrutura real, utilizando para isto, um teste chi-quadrado como critério de combinação. Por fim, junto com os dados de posição dados pelo módulo de odometria da plataforma robótica, é construído um mapa global a partir das linhas estimadas. A validação da estratégia é feita tanto em um ambiente simulado quanto em um ambiente real, onde foram representadas três situações com o objetivo de avaliar o desempenho do algoritmo quando o robô está diante de mudanças no entorno explorado. _________________________________________________________________________________ ABSTRACT / Among many features, line segment is one of the simplest features for describing indoor environments. Many recent works which propose different strategies for line-based maps use measurements that come from sensors like lasers and vision sensors, being less common the use of ultrasonic sensor for this purpose. This work presents a line-based mapping strategy using collected information from a set of ultrasonic sensors. This approach is mainly composed by two processes, the line segments extraction and the merging process. For the line extraction phase, an algorithm based on the Incremental approach for line segmentation is used. The output from this phase consists on a set of estimated lines that were extracted from the raw data. After that, a merging process is performed in order to cluster those extracted lines that match to the same planar structure. A chi-squared test is used as grouping criterion for this process. Finally, along with the odometry data provided by the robotic platform, a map in global coordinates is constructed from the extracted line segments. This strategy is validated using a simulated environment as well as a real one, where three different situations were represented in order to evaluate the performance of the algorithm when the robot faces changes in the explored area.
8

Superfícies regradas desenvolvíveis tipo tempo e tipo espaço no espaço de Minkowski

Silva, Fábio Nunes da 07 June 2013 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013. / Submitted by Alaíde Gonçalves dos Santos (alaide@unb.br) on 2013-09-18T10:48:57Z No. of bitstreams: 1 2013_FabioNunesdaSilva.pdf: 1717685 bytes, checksum: f01befb5c060f95216253f6dab9f7aed (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-09-19T11:28:36Z (GMT) No. of bitstreams: 1 2013_FabioNunesdaSilva.pdf: 1717685 bytes, checksum: f01befb5c060f95216253f6dab9f7aed (MD5) / Made available in DSpace on 2013-09-19T11:28:36Z (GMT). No. of bitstreams: 1 2013_FabioNunesdaSilva.pdf: 1717685 bytes, checksum: f01befb5c060f95216253f6dab9f7aed (MD5) / Neste trabalho, baseado em [11], [13] e [7] estudamos superfícies regradas tipo espaço ou tipo tempo no espaço de Minkowski. Inicialmente, encontramos expressões para o triedro de Frenet de curvas tipo tempo, tipo espaço ou tipo luz. Mostramos que uma superfície regrada tipo tempo ou tipo espaço é desenvovível se, e somente se, o parâmetro de distribuição é nulo. Então, para o caso em que os vetores de Frenet da diretriz não são tipo luz, mostramos que a superfície regrada tipo espaço ou tipo tempo é desenvolvível se, e somente se, a diretriz é uma hélice. No caso em que algum dos vetores de Frenet da diretriz é tipo luz, mostramos que a superfície regrada tipo tempo ou tipo espaço é desenvolvível se, e somente se, a torção é constante. Estudamos casos especiais, nos quais a superfície regrada tipo tempo ou tipo espaço é gerada por retas que estão no plano osculador, ou no plano normal, ou no plano retificante, ou na direção de algum dos vetores do triedro de Frenet. _______________________________________________________________________________________ ABSTRACT / In thisWork, based in [11], [13] and [7] we study timelike and spacelike ruled surfaces in Minkowski space. Initially we find expressions for Frenet trihedron of lightlike, spacelike or timelike curves. We show that a timelike or spacelike ruled surface is developable if and only if the distribution parameter is null. Then for the case where some of the Frenet vectors of the directrix aren’t lightlike, we show that the timelike ou spacelike ruled surface is developable if and only if the directrix is helix. In the case where some of the Frenet vectors of the directrix is lightlike, we show that the timelike or spacelike ruled surface is developable if and only if the torsion is constant. We study special cases which the timelike or spacelike ruled surface is generated for straight line that are in osculating plane, or in normal plane, or in rectifying plane, or in the direction of some of the Frenet vectors.
9

Superfícies de Weingarten especiais folheadas por círculos

Barroso, Igor de Alcântara 26 July 2013 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2013-10-25T14:56:21Z No. of bitstreams: 1 2013_IgorAlcantaraBarroso.pdf: 1522460 bytes, checksum: 6a065f67dba0df2043bbb9cdbcd680fa (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-10-30T10:53:34Z (GMT) No. of bitstreams: 1 2013_IgorAlcantaraBarroso.pdf: 1522460 bytes, checksum: 6a065f67dba0df2043bbb9cdbcd680fa (MD5) / Made available in DSpace on 2013-10-30T10:53:34Z (GMT). No. of bitstreams: 1 2013_IgorAlcantaraBarroso.pdf: 1522460 bytes, checksum: 6a065f67dba0df2043bbb9cdbcd680fa (MD5) / Baseado no trabalho de Rafael López, estudamos quais são as superfícies do espaço euclidiano de dimensão 3, folheadas por círculos, que satisfazem uma condição de Weingarten do tipo aH+bK=c, onde a, b e c são constantes e, H e K são respetivamente a curvatura média e Gaussiana. Distinguiremos dois casos. Se os planos de folheação não são paralelos, somente subconjuntos de esfera verificam a condição de Weingarten. No caso contrário, se os planos de folheação são paralelos, as superfícies são parte de superfícies de revolução, ou superfícies mínimas de Riemann (H=0) ou cones generalizados (K=0). ______________________________________________________________________________ ABSTRACT / Based on an article by Rafel López , we study the surfaces in the Euclidean 3-space, foliated by circles that satisfy a Weingarten condition of the type aH+bK = c, where a, b and c are constants, and H, and K denote the mean and Gaussian curvature, respectively. In order to do that, we will distinguish two cases. First, when the foliation planes are not parallel, we shall conclude that such a surface must be a subset of a sphere. When the foliation planes are parallel, such surface is either part of a surface of revolution, one of the Riemann's minimal examples (i.e. H = 0), or a generalized cone (i.e. K = 0).
10

O problema de Björling para superfícies máximas no espaço de Lorentz-Minkowski L4

Oliveira, Hudson Pina de 18 January 2011 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2011-05-17T14:26:25Z No. of bitstreams: 1 2011_HudsonPinaOliveira.pdf: 515108 bytes, checksum: 4288511cf42f3df2bb9973a4ec166f1a (MD5) / Approved for entry into archive by Elna Araújo(elna@bce.unb.br) on 2011-05-17T20:05:49Z (GMT) No. of bitstreams: 1 2011_HudsonPinaOliveira.pdf: 515108 bytes, checksum: 4288511cf42f3df2bb9973a4ec166f1a (MD5) / Made available in DSpace on 2011-05-17T20:05:49Z (GMT). No. of bitstreams: 1 2011_HudsonPinaOliveira.pdf: 515108 bytes, checksum: 4288511cf42f3df2bb9973a4ec166f1a (MD5) / Neste trabalho apresentamos uma representação tipo Weierstrass para superfícies máximas no espaço de Lorentz -Minkowski Ln . Baseado no trabalho de Asperti e Vilhena [5], consideramos esta representação para o caso n = 4 e resolvemos o Problema de Björling em L 4. Introduzimos vários exemplos com propriedades geométricas interessantes. Baseado em [12] estudamos o problema de Calabi-Bernstein e encontramos condições para que uma superfície máxima completa em Ln, n > 4, seja uma plano. ______________________________________________________________________________ ABSTRACT / In this work we present a Weierstrass type representation for maximal surfaces in Lorentz-Minkowski space Ln. Based on work by Asperti and Vilhena [5] we consider this representation for the case n = 4 and solved the Bj orling problem in L4. We introduce several examples with interesting geometric properties. Based on [12] we studied the of Calabi-Bernstein problem and nd conditions for a maximum surfaces complete in Ln; n > 4, is a plan.

Page generated in 0.0948 seconds