A software based GPU design, where most of the 3D pipeline is executed in software on shaders, with minimal support from custom hardware blocks, provides three benefits, it: (1) simplifies the GPU design, (2) turns 3D graphics into a general purpose application, and (3) opens the door for applying compiler optimization to the whole 3D pipeline.
In this thesis we design a framework and a full software stack to support further research in the field. LLVM IR is used as a flexible shader IR, and all fixed-function hardware blocks are translated into it. A sort-middle, tile-based, architecture is used for the 3D pipeline and trace-file based methodology is applied to make the system more modular. Further, we implement a GPU model and use it to perform an architectural exploration of the proposed software based GPU system design space.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43248 |
Date | 05 December 2013 |
Creators | Miretsky, Evgeny |
Contributors | Zhu, Jianwen |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds