Return to search

Untersuchungen zu MIRUP für Vektorpackprobleme

Das d-dimensionale Vektorpackproblem (d-VPP), welches aus Planungsaufgaben resultieren kann, ist eine Verallgemeinerung des eindimensionalen Zuschnittproblems (1CSP) und deshalb NP-schwer. Die stetige Relaxation, die mittels Spaltengenerierung gelöst werden kann, ergebe den optimalen Zielfunktionswert zC, während der optimale Zielfunktionswert der ganzzahligen Aufgabe zD ist. In der Dissertation werden obere Schranken für das Gap Δ = zD-zC hergeleitet und systematisch Instanzen des 1CSPs mit großem Δ (bis zu 6/5) konstruiert. Die im Teilbarkeitsfall des 1CSPs bekannte Abschätzung Δ < 2 wird zu Δ < 7/5 verschärft. Im d-VPP mit d > 1 gilt die MIRUP-Hypothese Δ < 2 nicht. Dies und die Unbeschränktheit des Wertes einer Variante bei d gegen unendlich werden an speziellen Beispielen gezeigt. Außerdem wird eine Heuristik vorgeschlagen und erprobt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22443
Date18 December 2003
CreatorsRietz, Jürgen
ContributorsTerno, Johannes, Scheithauer, Guntram, Dempe, Stephan, Althöfer, Ingo, Fischer, Andreas, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds