Return to search

Investigation of analytical models incorporating geomechanical effects on production performance of hydraulically and naturally fractured unconventional reservoirs

Petroleum and Geosystems Engineering / Production from unconventional reservoirs became popular in the last decade in the U.S. Promising production results and predictions, as well as improvements in hydraulic fracturing and horizontal drilling technology made unconventional reservoirs economically feasible. Therefore, an effective and efficient reservoir model for unconventional resources became a must. In order to model production from such resources, analytical, semi-analytical, and numerical models have been developed, but analytical models are frequently used due to their practicality, relative simplicity, and also due to limited availability of field data. This research project has been accomplished in two main parts. In the first part, two analytical models for unconventional reservoirs, one with infinite hydraulic fracture conductivity assumption proposed by Patzek et al. (2013), while the other one with finite hydraulic fracture conductivity assumption developed by Ozkan et al. (2011) are compared. Additionally, a commercial reservoir simulator (CMG, IMEX, 2012) is employed to compare the results with the analytical models. Sensitivity study is then performed to identify the critical parameters controlling the production performance of unconventional reservoirs. In the second part, naturally and hydraulically fractured unconventional reservoir is considered. In addition, geomechanical effects on natural and hydraulic fractures are examined. A simple analytical dual porosity model, which represents the natural fractures in unconventional reservoirs, is improved to handle the constant bottom-hole pressure production scenario to identify the production performance differences between the cases with and without geomechanical effects. Finally, geomechanical effects are considered for combined natural and hydraulic fractures, and an evaluation of the circumstances in which the geomechanical effects cause a significant production loss is carried out. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26452
Date10 October 2014
CreatorsAybar, Umut
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds