Return to search

Formation, characterization and flow dynamics of nanostructure modified sensitive and selective gas sensors based on porous silicon

Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. Both top-down and bottom-up approaches are utilized in the process. A nano-pore coated micro-porous silicon surface is modified selectively for sub-ppm detection of NH3, PH3, NO, H2S, SO2. The selective depositions include electrolessly generated SnO2, CuxO, AuxO, NiO, and nanoparticles such as TiO2, MgO doped TiO2, Al2O3, and ZrO2. Flow dynamics are analyzed via numerical simulations and response data. A general coating selection method for chemical sensors is established via an extrapolation on the inverse of the Hard-Soft Acid-Base concept.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/39541
Date29 March 2011
CreatorsOzdemir, Serdar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0015 seconds