Return to search

The role of glucose-dependent insulinotropic peptide in adipocyte. / CUHK electronic theses & dissertations collection

糖尿病是一种呈现流行趋势的代谢紊乱综合症,现如今,全球大约有3.46亿糖尿病患者, 这庞大的数字给各国的公共健康安全支出带来了严重的财政负担。 其中,二型糖尿病(T2DM)占90%。其特点是周围组织的胰岛素抵抗以及后期损伤的胰岛β细胞的功能。在饮食后,小肠会分泌两种肠促胰岛素,葡萄糖依赖性促胰岛素多肽(GIP)和胰高血糖素样肽-1(GLP-1)。两种多肽的主要功能是促进餐后胰岛细胞中胰岛素的分泌,另外他们还可以通过其自身的G蛋白偶联受体,GIPR和GLP-1R发挥其他作用,如葡萄糖依赖性的刺激胰岛素的生成,刺激胰岛β细胞的增殖,抑制细胞的凋亡等。这些功能也使肠促胰岛素成为糖尿病治疗的一种手段,比如Exendin-4和DPP4抑制剂。 然而,除了在胰岛中的作用,肠促胰岛还可能和脂质代谢相关,其中GIP和脂质代谢的报导研究的更加深入。在肥胖的状态下,血液中GIP含量高于正常水平;GIPR基因敲除老鼠和GIPR的抑制剂喂养的小鼠可以抵抗高脂饮食诱导的肥胖和2型糖尿病;GIP还可以直接调节脂肪细胞的脂肪生成和脂解。这些数据表明GIP在肥胖和糖尿病的发生过程中可能存在促进作用,这使得GIP治疗药物的开发需要谨慎的对待。 / 为了进一步研究GIP在脂肪细胞中发挥的生物学效应,在本研究中,我们利用腺病毒介导技术通过在脂肪细胞中过表达GIPR来增加GIP的活性,然后检查GIP在脂肪细胞中所起的作用。实验结果表明,GIP可以通过cAMP-PKA信号通路迅速并且长期的刺激脂肪细胞的炎症反应,增强IKKβ-NFκB信号通路和增加炎症基因的表达。更深入的机制研究表明,JNK 信号通路也参与GIP诱导的炎症反应,抑制JNK通路可以大部分恢复GIP增加的炎症因子的表达和IKKβ的磷酸化水平。由于长期的炎症反应,脂肪细胞的胰岛素信号通路受到GIP的损伤,在GIPR过表达的脂肪细胞中,胰岛素刺激的AKT磷酸化水平和葡萄糖吸收能力都被GIP降低,葡萄糖转运蛋白4(Glut-4)的表达水平也同时减少。因此,本研究结果表明GIP可能在肥胖的发展过程中,通过诱导脂肪细胞的炎症反应来损伤胰岛素敏感性而最终导致2型糖尿病的发生。 / Diabetes mellitus is a type of metabolic syndrome that has prevailed all over the world with the development of economic and over-nutrient lifestyle. It is estimated to 346 million diabetes patients in the worldwide most recently. The huge population put a major burden on the cost of public health care to all the countries. Among the types of diabetes, type 2 diabetes (T2DM) makes up 90% of recorded cases. The characteristics of T2DM are insulin resistance of peripheral tissues and impaired pancreatic cell function and mass. Two major incretins GIP (glucose-dependent insulinotropic peptide) and GLP-1 (glucagon-like peptide 1) are secreted from gut in response to food ingestion. The prominent role of GIP and GLP-1 is to stimulate glucose-dependent insulin release in pancreatic β cell. In addition, they both exert multiple biological effects via their relative G-protein coupled receptors, GIPR and GLP-1R, including glucose-stimulated insulin production, cell proliferation and anti-apoptosis in pancreatic β cells. The beneficent effects of incretins potentiate them as targets for the treatment of diabetes. GLP-1 analog, exendin-4 and DDP4 (dipeptidyl peptidase-4) inhibitors (to prevent GIP and GLP-1 from degradation) have been already used in clinical research. However, in addition to their effects on pancreatic β cell, both peptides are also related to lipid metabolism. The role of GIP has been studied more extensively. In obese state, the circulating level of GIP is elevated. GIPR knockout (KO) mice are resistant to high fat diet (HFD) induced obesity, a similar phenotype is found in GIPR antagonist administrated HFD-mice. Moreover, GIP also directly promotes lipogenesis and lipolysis in adipocytes. The rising evidence suggests a potential role of GIP in adipocyte biology and lipid metabolism, which diminishes the enthusiasm of GIP as a candidate therapeutic reagent for T2DM. / In order to further understand the biological effects of GIP in adipocytes, here, we over-expressed GIPR in 3T3-L1 CAR adipocytes via adenovirus-mediated gene transfer technology to enhance the activity of GIP. The results demonstrate that GIP impairs the physiological functions of adipocytes as a consequence of increasing the production of inflammatory cytokines, chemokines, and phosphorylation of IkB kinase (IKK) β through activation of the cyclic AMP-protein kinase A (cAMP-PKA) pathway. Activation of Jun N-terminal Kinase (JNK) pathway is also observed in GIP-induced inflammatory responses in adipocytes. An inhibitor of JNK blocks GIP-stimulated secretion of inflammatory cytokines and chemokines, as well as phosphorylation of IKKβ. The chronic inflammatory response eventually impairs insulin signaling in adipocytes, as demonstrated by reduction of protein kinase B (PKB/AKT) phosphorylation. The subsequently physiological analysis also indicates that GIP inhibits insulin-stimulated glucose uptake, and gene expression analysis reveals a decrease of glucose transporter 4 (Glut-4) in the meanwhile. The results suggest that GIP may be one of stimuli attributable to obesity induced insulin resistance via induction of adipocyte inflammation. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Nie, Yaohui. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 95-111). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / INTRODUCTION --- p.1 / Chapter Part 1 --- Obesity and Type 2 diabetes --- p.1 / Chapter 1.1 --- Introduction to diabetes --- p.1 / Chapter 1.1.2 --- Physiology of adipocyte --- p.4 / Chapter 1.1.3 --- Mechanism of obesity induced diabetes --- p.10 / Chapter Part 2 --- Incretins and T2DM --- p.12 / Chapter 2.1 --- History of incretins --- p.12 / Chapter 2.2 --- Physiological actions of incretins --- p.14 / Chapter 2.3 --- Molecular mechanism of incretin actions in pancreas --- p.16 / Chapter 2.4 --- Incretins and T2DM --- p.19 / Chapter Part 3 --- Incretins and lipid metabolism --- p.23 / Objective --- p.26 / Methods and materials --- p.28 / Chapter 1 --- Cell culture --- p.28 / Chapter 1.1 --- 3T3-L1 culture and differentiation --- p.28 / Chapter 1.2 --- 3T3-L1 CAR culture and differentiation --- p.29 / Chapter 2 --- Cloning and recombinant adenovirus construction --- p.30 / Chapter 2.1 --- Plasmid construct --- p.30 / Chapter 2.2 --- Construct of recombinant adenoviruses --- p.30 / Chapter 2.3 --- Generation and infection of the adenoviruses --- p.31 / Chapter 3 --- Physiological and morphological assays --- p.32 / Chapter 3.1 --- Lipolysis assay --- p.32 / Chapter 3.2 --- TUNEL assay --- p.32 / Chapter 3.3 --- Glucose uptake --- p.33 / Chapter 3.4 --- Glut-4 localization --- p.33 / Chapter 4 --- Gene expression analysis --- p.35 / Chapter 4.1 --- Quantitative real-time PCR --- p.35 / Chapter 4.2 --- Immunoblot analysis --- p.35 / Chapter 4.3 --- ELISA assay --- p.36 / Chapter 5 --- Isolation of primary adipocytes --- p.37 / Results --- p.38 / Chapter Part 1 --- Role of GIP in 3T3-L1 cells --- p.38 / Chapter 1.1 --- Differentiation of 3T3-L1 adipocytes --- p.38 / Chapter 1.2 --- GIP slightly stimulates phosphorylation of p-CREB and lipolysis in 3T3-L1 cells. --- p.40 / Chapter 1.3 --- Analysis of gene expression in GIP-treated adipocytes --- p.42 / Chapter 1.4 --- Discussion --- p.44 / Chapter Part 2 --- Role of GIP in GIPR over-expressing 3T3-L1 CAR adipocytes --- p.46 / Chapter 2.1 --- Differentiation of 3T3-L1 CAR adipocytes --- p.46 / Chapter 2.2 --- Functional tests in GIPR over-expressing 3T3-L1 CAR adipocytes. --- p.48 / Chapter 2.3 --- Effect of GIP on cell viability --- p.50 / Chapter 2.4 --- Analysis of gene expression in GIP-treated adipocytes --- p.52 / Chapter 2.5 --- GIP activates inflammatory responses in GIPR over-expressing adipocytes --- p.54 / Chapter 2.6 --- Inhibition of IKKb pathway restores GIP-induced inflammatory responses --- p.56 / Chapter 2.7 --- Effects of GIP on adipocytes are partially dependent on the cAMP-PKA pathway --- p.58 / Chapter 2.8 --- Activation of cAMP-PKA pathway induces adipocyte inflammation. --- p.60 / Chapter 2.9 --- cAMP-Epac pathway is not involved in GIP-induced inflammation --- p.62 / Chapter 2.10 --- GIP stimulates cell stress activated kinases --- p.64 / Chapter 2.11 --- JNK partially mediates GIP-induced adipocyte inflammation --- p.65 / Chapter 2.12 --- Inhibition of JNK pathway partially restores GIP-induced inflammatory responses --- p.67 / Chapter 2.13 --- GIP impairs insulin signaling in GIPR over-expressing 3T3-L1 CAR adipocytes via inducing inflammatory response --- p.69 / Chapter 2.14 --- GIP enhances basal glucose uptake but impairs insulin stimulated glucose uptake in 3T3-L1 CAR GIPR over-expressing adipocytes --- p.71 / Chapter 2.15 --- Discussion --- p.73 / Chapter Part 3 --- Role of GIP in primary adipocytes --- p.78 / Chapter 3.1 --- GIPR expression level in primary adipocytes --- p.78 / Chapter 3.2 --- Analysis of gene expression in primary adipocytes after GIP treatment --- p.80 / Chapter 3.3 --- Discussion --- p.81 / SUMMARY --- p.82 / Chapter Future investigation --- p.83 / Chapter Appendix 1: --- Abbreviations --- p.86 / Chapter Appendix 2: --- Protocols --- p.90 / Preparation of competent cells --- p.90 / Outlines of recombinant adenovirus preparation --- p.91 / Virus titering (TCID50) --- p.92 / Primers for real-time PCR --- p.93 / Chapter Publications and Scientfic activities --- p.94 / Thesis related publication: --- p.94 / Other pubiliations: --- p.94 / Scientific activities: --- p.94 / References --- p.95

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328221
Date January 2012
ContributorsNie, Yaohui., Chinese University of Hong Kong Graduate School. Division of Medical Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource (ix, 111 leaves) : ill. (some col.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0028 seconds