Return to search

Atmospheric greenhouse gases detection by optical similitude absorption spectroscopy / Détection de gaz à effet de serre dans l'atmosphère par spectroscopie optique de similitude

Cette thèse porte sur le développement théorique et expérimental d’une nouvelle méthodologie de détection des gaz à effet de serre basée sur la spectroscopie optique d’absorption. La question posée était : est-il possible d’évaluer de manière univoque la concentration d’un gaz à partir d’une mesure par spectroscopie d’absorption différentielle, dans laquelle l’étendue spectrale de la source lumineuse est plus large que celle d’une ou de plusieurs raies d'absorption de la molécule considérée et que, de plus la détection n’est pas résolue spectralement ? La réponse à cette question permettra d’entrevoir à terme le développer d’un instrument de télédétection de terrain robuste sans contrainte opto-mécanique majeure aussi bien sur la source laser que sur la chaîne de détection.Ces travaux ont donné lieu au développement d’une nouvelle méthodologie que l’on dénomme « Optical Similitude Absorption Spectroscopy » (OSAS) ou spectroscopie d’absorption optique de similitude. Cette méthodologie permet donc de déterminer de manière quantitative une concentration d’un gaz à partir de mesures d’absorption différentielle non résolue spectralement sans procédure de calibration en concentration. Ceci demande alors une connaissance précise de la densité spectrale de la source lumineuse et du système de détection. Ces travaux publiés ont permis de démontrer que cette nouvelle méthodologie est dans le domaine spectral du proche infrarouge peu sensible aux conditions thermodynamiques du gaz observé. D’autre part, ces travaux ont permis de mettre en exergue l’inversion de la Loi de Beer-Lambert non résolue spectralement ce qui donne lieu à la résolution d’un système analytique non linéaire. À cette fin le développement d’un nouvel algorithme d’inversion de ce type de mesures a pu être vérifié expérimentalement en laboratoire sur le méthane, en exploitant aussi bien des sources à large bande spectrale cohérente et non cohérente. La détection de cette molécule dans l’atmosphère a pu être réalisée dans le cadre de ces travaux en couplant judicieusement la méthodologie OSAS et la technique Lidar. Ces travaux ouvrent de nombreuses perspectives sur la détection de gaz à effet de serre dans le domaine spectral infrarouge ainsi que la possibilité de détecter plusieurs molécules d’intérêt atmosphérique simultanément / This thesis concerns the theoretical and experimental development of a new methodology for greenhouse gases detection based on the optical absorption. The problem relies on the unambiguous retrieval of a gas concentration from differential absorption measurements, in which the spectral width of the light source is wider than one or several absorption lines of the considered target gas given that the detection is not spectrally resolved. This problem could lead to the development of a robust remote sensing instrument dedicated to greenhouse gas observation, without strong technology limitations on the laser source as well as on the detection system. Solving this problem, we could propose a new methodology named: "Optical Similitude Absorption Spectroscopy" (OSAS).This methodology thus allows to determine a quantitative target gas concentration from non-resolved differential absorption measurements avoiding the use of a gas concentration calibration procedure. Thereby, a precise knowledge of the emitted power spectral density of the light source and the efficiency of the detection system are needed.This work that has been recently published could demonstrate that this new methodology applied on the NIR remains accurate even in the presence of strong atmospheric pressure and temperature gradients. Moreover, we show that inverting spectrally integrated measurements which follow the Beer-Lambert law leads to solve a nonlinear system. For this, a new inversion algorithm has been developed. It was experimentally verified in laboratory on methane by using coherent and non-coherent broadband light sources. The detection of methane in the atmosphere could be also realized by coupling the OSAS methodology and the Lidar technique. Outlooks are proposed and especially on the detection of greenhouse gases in the infrared spectral domain as well as the ability to simultaneously detect several atmospheric molecules of interest

Identiferoai:union.ndltd.org:theses.fr/2016LYSE1131
Date22 July 2016
CreatorsAnselmo, Christophe
ContributorsLyon, Rairoux, Patrick, Cariou, Jean-Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds