Return to search

Amplification d'un signal à 10 um par pompage optique du CO₂ utilisé comme milieu de gain / Amplification d'un signal à 10 µm par pompage optique du CO2 utilisé comme milieu de gain

Titre de l'écran-titre (visionné le 3 octobre 2023) / Cette thèse traite de l'amplification d'un laser à une longueur d'onde de 10 µm par pompage optique à 2 µm en utilisant le CO₂ comme milieu actif. L'objectif est de réaliser une preuve de concept sur ce procédé physique afin d'amplifier ultérieurement des impulsions femtosecondes. Ces impulsions seront utilisées pour effectuer des ionisations dans le domaine de la physique atomique et des champs laser intenses. Ce travail comporte deux axes principaux : la génération d'une fréquence de pompe absorbée par le milieu actif et l'amplification d'une impulsion milliseconde à 10,6 µm. Dans le premier axe (Chapitre 2), nous comparons deux types de lasers non-linéaires permettant de générer une longueur d'onde de pompe à 2 µm utilisée pour l'amplification : un oscillateur paramétriques optiques (OPO) simple et très énergétique et un système composé d'un OPO puis d'amplificateur paramétrique optique (OPA) aussi appelé MOPA ("Master Oscillator/ Parametric Amplifier"). Nous visons à créer un système capable de supporter des impulsions très énergétique (une haute fluence) ; ainsi (dans le Chapitre 3) nous étudions comment augmenter le seuil de résistance aux dommages de traitements antireflets et des miroirs. Dans le second axe, nous analysons théoriquement l'amplification d'une impulsion de 10,6 µm pompée optiquement dans un milieu actif de CO₂ à l'aide des équations d'évolution (Chapitre 4). Ce modèle nous permet de comprendre l'impact des différents paramètres physiques (pression, température, longueur du milieu actif, etc) sur l'amplification. Nous réalisons ensuite l'amplification expérimentalement (Chapitre 5) en faisant la preuve de concept avec un laser milliseconde de 10,6 µm. Nous mettons en évidence la présence de gain à 10,6 µm et discutons des résultats inattendus obtenus. / The objective of this thesis is to amplify laser pulses with a wavelength of 10 µm using optical pumping at 2 µm and CO₂ as an active medium. The aim is to establish a proof of concept for the physical process that will enable the amplification of femtosecond pulses in the future. These pulses will be used for ionization in atomic physics and intense laser fields. This work is composed of two main parts: the generation of a pump frequency which will be absorbed by the active medium and the amplification of a 10.6 µm laser millisecond pulse. In the first part (Chapter 2), we compare two nonlinear lasers capable of generating a 2 µm pump wavelength which will be used for the amplification process: a simple, highly energetic optical parametric oscillator (OPO) and a system composed of an OPO and optical parametric amplifier (OPA), also referred to as MOPA (for Master Oscillator/ Parametric Amplifier). We seek a scalable system that can support high energetic pulses (high fluence); this is why (in Chapter 3) we investigate methods to enhance the laser-induced damage threshold (LIDT) of our anti-reflection coatings and mirrors. In the second part, we studied theoretically the amplification of a 10.6 µm pulse optically pump in a CO₂ active medium using the rate equations (Chapter 4). This model helped us to understand the effects of different physical parameters (pressure, temperature, active medium length, etc) on the amplification process. We subsequently amplify a millisecond laser pulse at 10.6 µm as the proof of concept and, demonstrating that some gain was achieved. Finally, we explore the unexpected results that were obtained (Chapter 5).

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/126104
Date04 October 2023
CreatorsChantrel, Paul-Emile
ContributorsWitzel, Bernd, Piché, Michel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxv, 282 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds