• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 7
  • Tagged with
  • 37
  • 37
  • 37
  • 37
  • 32
  • 29
  • 28
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manipulation d'impulsions laser femtosecondes pour la génération d'harmoniques d'ordres élevés

Arias, Loïc January 2021 (has links)
La génération efficace de sources attosecondes requiert l'utilisation de lasers femtosecondes dont les impulsions doivent pouvoir être contrôlées et manipulées afin d'obtenir le meilleur flux possible. L'amplification paramétrique optique (OPA) et la compression des impulsions, à travers une fibre creuse, une cellule de gaz ou des lames de verre minces, sont parmi les moyens le permettant. Ainsi, un étage d'amplification suivant un OPA commercial a été mis en place, permettant de fournir 1.5 mJ à 1.4 µm. Il a aussi été possible de mettre en opération deux solutions simples et peu coûteuses pour comprimer à moins de 20 fs des impulsions de 4.2 mJ dans une cellule d'argon, avec une efficacité de 52% et des impulsions de 0.6 mJ dans une série de lames minces de borosilicate avec une efficacité de 80%. Dans un deuxième temps, une nouvelle technique d'élargissement spectral dans une fibre creuse (HCF) a été développée. Basée sur l'effet Raman dans des gaz moléculaires, elle est particulièrement adaptée aux sources laser ytterbium de haute puissance, permettant une compression à moins de deux cycles optiques, tout en offrant un décalage dans l'infrarouge. Avec une efficacité de transmission de 50% et une efficacité de conversion de photons près de 80%, tout en ne nécessitant pas de miroirs chirpés, elle permet de proposer dans un montage compact et accessible, une solution offrant des perspectives particulièrement intéressantes, autant pour l'accroissement du flux des sources XUV lors de la génération d'harmoniques d'ordres élevés que pour les applications spectroscopiques en chimie et biologie.
2

Génération, caractérisation et applications d’impulsions lasers intenses de quelques cycles optiques du visible jusqu'à l’infrarouge moyen

Marceau, Claude 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / Cette thèse traite de la science et de la technologie du laser ultrarapide et intense. Un historique de cette discipline est d'abord présenté en guise d'introduction. La chaîne laser Ti:saphir stabilisée à la phase du laboratoire du professeur Witzel est ensuite expliquée en détail. On présente également l'amplificateur paramétrique et le module de différence de fréquence, permettant d'atteindre le régime de l'infrarouge moyen. Le premier chapitre de contenu scientifique original présente en détail la technique de porte de polarisation variable que nous avons développée au laboratoire. Quatre coins de quartz biréfringents sont utilisés avec une lame quart d'onde achromatique pour produire une impulsion à porte de polarisation de quelques cycles optiques. La partie centrale est polarisée linéairement et les deux ailes sont polarisées circulairement. Cette technique est employée pour étudier l'ionisation multiphotonique résonante du xénon. On montre qu'il est possible d'exciter l'état résonant 5g du xénon avec une impulsion effective plus courte qu'un cycle optique. Les règles de sélection limitent le processus d'excitation à la seule porte de polarisation. Les trois chapitres suivants traitent principalement de design de systèmes permettant la caractérisation et la compression optimale d'impulsions lasers de quelques cycles optiques. On présente d'abord le montage de second harmonic frequency-resolved optical gating (SHG-FROG) qui a été développé pour caractériser le profil d'intensité et la phase spectrale et temporelle d'impulsions Ti:saphir de quelques cycles. On présente ensuite en détail l'interféromètre en lumière blanche qui a été conçu pour mesurer la dispersion d'optiques diverses, notamment celle des miroirs à dispersion négative (chirp) utilisés pour comprimer les impulsions de quelques cycles. On présente ensuite un chapitre sur l'ingénierie inverse de miroirs chirp commerciaux, qui a mené à la conception, puis à la réalisation et à l'évaluation des performances de nos propres miroirs chirp. Une méthode systématique pour comprimer de manière optimale les impulsions lasers de quelques cycles en optimisant l'angle d'incidence de miroirs chirp est ensuite présentée. Cette méthode s'appuie sur les réalisations des trois chapitres précédents. Un projet en cours dans notre groupe de recherche consiste à développer une source d'impulsions intenses dans l'infrarouge moyen pour la génération d'harmoniques d'ordres élevés dans le domaine des rayons X. Une méthode générale pour caractériser les impulsions infrarouges a donc été développée. Elle s'appuie sur le mélange de quatre ondes entre une impulsion Ti:saphir intense de quelques cycles et une impulsion infrarouge arbitraire. Il en résulte un signal près du deuxième harmonique de l'impulsion Ti:saphir proportionnel à l'intensité de l'impulsion infrarouge. Une technique pour résoudre directement le champ électrique de l'impulsion infrarouge à l'aide d'hétérodynage n'a pas donné les résultats escomptés parce que la stabilisation de la phase de l'impulsion infrarouge n'est pas suffisamment stable. Le dernier chapitre de cette thèse traite donc de caractérisation de la phase absolue d'impulsions infrarouges. Plus particulièrement, on a observé un fort couplage entre l'énergie par impulsion et la phase absolue mesurée par un interféromètre non linéaire de type f-2f basé sur la génération de supercontinuum dans une fenêtre de saphir. On présente donc une mesure de ces coefficients et leur dépendance sur la longueur d'onde centrale du laser de 800 à 1940 nm. / The topic of this thesis lies in the field of the ultrafast intense laser science and technology. An historical review of this vast field is presented as an introduction. The carrier-envelope phase stabilized Ti:sapphire laser system of Professor Witzel's laboratory is then explained in details. The optical parametric amplifier and the difference frequency generation module reaching the mid-infrared are also presented. The first chapter of original scientific content presents in great details a variable gate width polarization gating technique that was developed in the laboratory. Four birefringent quartz wedges were used together with an achromatic quarter wave plate to produce polarization gated few cycle laser pulses. The central part of each pulse is linearly polarized and the wings are circularly polarized. This technique was used to study resonant multiphoton ionization of xenon. We show that it is possible to excite the Rydberg 5g state of xenon with an effective pulse that is shorter than one optical cycle. Electric dipole quantum selection rules confine the excitation process to the polarization gate duration. The three following chapters are mainly about the design of setups to characterize and optimally compress few cycle laser pulses. We first present the second harmonic frequency-resolved optical gating (SHG-FROG) setup that was developed to retrieve the intensity profiles and the spectral and temporal phases of few cycle Ti:sapphire laser pulses. The white light interferometer that was built to measure the dispersion of several optical components is then exposed. Its main purpose is to characterize the chirped mirrors used to compress few cycle pulses. The reverse engineering of commercial chirped mirrors that led us to the development, the production and the characterization of our own designs is then presented. A systematic method to optimally compress femtosecond laser pulses with the optimization of the angle of incidence of chirped mirrors is then presented. This method was inspired by the realizations of the three previous chapters. An ongoing project in our research group is the production of intense mid-infrared laser pulses to generate coherent high-order harmonics in the X-ray regime. A general method to characterize arbitrary complex infrared pulses was thus developed. It is based on four-wave mixing between a Ti:sapphire few cycle pulse and an infrared pulse. The resulting signal is close to the second harmonic band of the Ti:sapphire pulse and it is proportional to the intensity of the infrared pulse. An heterodyne version of this technique was also tried, but the results were disappointing mainly because the shot-to-shot carrier-envelope phase stabilization of the infrared source is insufficient over the duration of the measurement. The last chapter of this thesis thus investigates the absolute phase stability of our infrared sources. Most specifically, we found a strong coupling between the pulse energy and the measured phase from a f-2f nonlinear interferometer relying on supercontinuum generation in sapphire. We present the measured energy-phase coupling coefficients from 800 to 1940 nm.
3

Amplification d'impulsions laser ultrabrèves à 10µm par pompage optique dans un gaz de CO² sous haute pression

Thomas, Steven 15 December 2020 (has links)
In order to generate high harmonics (multi-keV regime) from which a coherent X-ray source can be made, ultrashort mid-infrared laser pulses are necessary. This document presents the basics of the generation of IR pulses using Nd:YAG and Ti:Sapphire systems currently in use in Prof. Bernd Witzel’s laboratory. A first section explains the process by which the original pump laser (Nd:YAG, 1064 nm, 10 ns) is converted into a secondary pump at 2 µm, which is a mandatory step in order to interact with the amplifying medium due to the molecular structure of CO2. This conversion is realized by using an optical parametric oscillator (OPO) and an optical parametric amplifier (OPA). More precisely, the selection of the non-linear medium to use for the OPO and OPA (KTP) is explained. In addition, which mirrors are best-suited for the OPO and the relevant non-linear physical equations (amplitude-coupled equations) are described. Next, a second section aims to expose the theory that makes it possible to use a 2 µm nanosecond pump to amplify the 10 µm, femtosecond radiation derived from a femtosecond Ti:Sapphire laser. The limits and conditions for this process are explained; in short, we find that the CO2 gas pressure must reach 40 atm. In order to do so, an aluminum gas cell with two thick ZnSe windows must be used. Finally, the last part of this thesis describes and explains the design of the aforementioned CO2 cell necessary to the amplifying process. The optimal length of the cell, its geometry and its windows (made from ZnSe, with a 5.1 mm thickness) are the subject of a detailed analysis
4

Applications of frequency combs in remote sensing

Boudreau, Sylvain 20 April 2018 (has links)
Cette thèse a pour objectif l’exploration des applications potentielles des peignes de fréquences en télédétection. Pour ce faire, trois configurations expérimentales sont étudiées. Pour chacune des configurations, une analyse de divers aspects de leur fonctionnement est faite et les avantages et les inconvénients qui y sont propres sont discutés. Des montages expérimentaux basés sur ces configurations ont été fabriqués en laboratoire. Des mesures expérimentales viennent démontrer les capacités de détection des différentes techniques. La première configuration étudiée concerne l’échantillonnage passif d’une source optique externe. Cette technique permet d’évaluer le spectre de la source d’intérêt en la combinant interférométriquement avec les impulsions d’une paire de peignes de fréquences. Une étude probabiliste de la technique est effectuée afin d’en évaluer les limites de performance. Des mesures de sources cohérentes et incohérentes à haute résolution spectrale sont présentées. La deuxième technique étudiée exploite la configuration dite incohérente permettant de faire la caractérisation active d’une cible. Cette technique rend possible la mesure hyperspectrale résolue en distance d’une scène observée. Un montage expérimental de lidar hyperspectral a été conçu et fabriqué en laboratoire dans le but de faire des mesures extérieures de cibles à une distance allant jusqu’à 175 m. Les capacités de détection de plusieurs caractéristiques de cibles sont démontrées pour des cibles dures et distribuées, sous forme de nuages d’aérosols. Des mesures de raies d’absorption moléculaire, ainsi que d’épaisseur d’échantillons transparents et translucides, sont présentées. La troisième configuration étudiée, dite cohérente, permet de faire de la mesure active d’une cible en utilisant un des trains d’impulsions comme oscillateur local. L’utilisation d’un oscillateur local ouvre la porte à des mesures de vibrométrie à haute sensibilité, ce qui est impossible en configuration incohérente. Un modèle analytique de collecte de puissance pour les systèmes à un seul mode transversal, permettant de prédire les puissances en jeu en configuration cohérente, est développé et validé expérimentalement. La technique de référencement habituelle, permettant de corriger les erreurs causées par les fluctuations des paramètres des peignes, est modifiée et adaptée aux mesures de vibrométrie cohérente. Des mesures de vibrométrie résolue en distance sont présentées, où la capacité du système à démoduler une voix humaine à partir des vibrations d’un mur est démontrée. / The goal of this thesis is to explore the potential applications of frequency combs for remote sensing. For this purpose, three comb-based configurations are studied. For each of these configurations, an analysis of their workings is performed and their advantages and disadvantages are discussed. Experimental setups based on those configurations were built in laboratory. The detection capabilities of the techniques are demonstrated through experimental measurements. The first configuration that is studied enables passive sampling of an external optical source. Using this technique, it is possible to compute the spectrum of the considered source by interferometrically combining it with the pulses from a pair of frequency combs. A stochastic study of the technique is performed to assess its performance limits. Coherent and incoherent sources with high-resolution spectral content are measured. The second technique uses a configuration called incoherent that enables active characterization of a target. Using this technique, it is possible to perform range-resolved hyperspectral measurements of an observed scene. A hyperspectral lidar setup was designed and assembled in laboratory with the goal of performing outdoors measurements of targets at distances up to 175 m. The sensing capabilities of the system are shown for hard and distributed targets, in the form of aerosol clouds. Molecular absorption measurements, as well as thickness measurements for both transparent and translucent targets, are shown. Using the coherent configuration, which is the third one that was considered, it is possible to make active measurements of a target by using one of the pulse trains as a local oscillator. The use of a local oscillator opens the door to high sensitivity vibrometry, which is impossible with the incoherent configuration. An analytical model for the power collection capabilities of a single-transverse-mode system, which has to be used for coherent measurements, is developed and experimentally validated. The usual referencing technique, which is used to correct for fluctuations in comb parameters, is modified and adapted to the case of coherent vibrometry. Range-resolved vibrometry measurements are performed, demonstrating the capability of the system to extract a human voice signal from the vibrations of a wall.
5

Lasers à fibre à synchronisation modale passive par rotation non linéaire de la polarisation : dynamique en régime multi-impulsionnel

Roy, Vincent 13 April 2018 (has links)
Les travaux présentés dans cet ouvrage concernent l’étude de la dynamique des lasers à fibre à synchronisation modale passive. Le mécanisme qui assure la formation des impulsions repose sur un principe d’interférométrie non linéaire (i.e. rotation non linéaire de la polarisation). Or, ce mécanisme possède la particularité de voir son action être renversée lorsque la puissance des impulsions dépasse un certain seuil, i.e. les ailes observent un gain plus élevé que le centre de l’impulsion. Le train d’impulsions devient alors instable, une situation généralement suivie de l’apparition d’une ou plusieurs impulsions additionnelles. Dans ce nouveau régime, il est courant d’observer la formation de groupes d’impulsions cohérentes. La nature de l’interaction en jeu diffère selon que la dispersion observée par les impulsions est plus ou moins élevée. Dans le cas où la dispersion résiduelle de la cavité permet la propagation d’impulsions solitoniques, il a été montré que ce phénomène est relié à l’interaction non linéaire entre les impulsions et les ondes dispersives résonantes émises suite aux perturbations périodiques encourues par les impulsions suivant leur propagation dans la cavité. Toutefois, dans le cas où des milieux de dispersion positive et négative sont disposés dans la cavité pour faire en sorte de réduire la dispersion résiduelle de celle-ci, les bandes latérales associées aux ondes dispersives résonantes s’en trouvent fortement atténuées en raison de la dérive de fréquence (importante) observée par les impulsions dans chaque portion de la cavité. En fait, on montre que la formation des groupes d’impulsions résulte plutôt de l’interaction directe entre les impulsions puisque celles-ci sont amenées à se superposer partiellement sur une portion significative de la cavité. Également, dans ce même régime, on rapporte l’observation de collisions qui se produisent entre des groupes d’impulsions voyageant avec des vitesses différentes. Divers scénarios sont observés suivant les modifications plus ou moins importantes entraînées par la collision. En effet, il n’est pas nécessaire que l’énergie et la quantité de mouvement soient conservées lors des collisions entre les impulsions dans le laser puisqu’il s’agit d’un système dissipatif. En outre, dans le cas où les collisions se répètent sur une base périodique, l’acquisition d’une séquence d’autocorrélations a permis de mettre en évidence la dynamique particulière qui caractérise le processus de collision. / The work presented herein is primarily concerned with the dynamics of passively mode-locked fiber lasers. The mechanism used for achieving pulse emission relies on nonlinear interferometry (i.e. nonlinear polarization rotation). However, the same mechanism acts as a limiter whenever the pulse power is increased above a given amount, i.e. the wings are subject to a higher gain than the peak of the pulse. The pulse train then becomes unstable and the creation of one or more additional pulses follows from this instability. In this new regime, it is not unusual to observe the formation of coherent states of bound pulses. The nature of the interaction responsible for this phenomenon depends on the amount of dispersion experienced by the pulses along the laser cavity. In the case of a cavity that sustains the formation of solitons, the occurrence of pulse bound states was shown to result from the nonlinear interaction between the pulses and the resonant dispersive waves emitted as a result of the periodic perturbations the solitons undergo on successive cavity round trips. In contrast, for the case of a cavity built from positive and negative dispersion fibers such as to reduce the net dispersion, the sidebands related to the resonant dispersive waves are greatly reduced because of the significant frequency chirp the pulses acquire along each fiber segment. Thus we show here that the formation of pulse bound states results instead from the direct interaction between the multiple pulses since the pulses interfere with one another on a significant part of the laser cavity. In addition, in the same regime, we report the observation of collisions occurring between pulse bound states traveling with different group velocities. This process may result in several outcomes, depending on the changes the bound states undergo during the collisions. In fact, energy and momentum need not be conserved in the process since the laser is a dissipative system. Finally, in the case of collisions that repeat periodically, the acquisition of a sequence of autocorrelations allowed us to verify the peculiar dynamics that characterizes the collision process.
6

Étude sur la génération de supercontinuum dans l'infrarouge

Fortin, Vincent 16 April 2018 (has links)
La génération de supercontinuum est un processus par lequel le spectre d'une source laser est élargi considérablement lorsque le faisceau traverse une composante nonlinéaire, le plus souvent une fibre optique. La maîtrise de ce sujet est essentielle, car les bénéfices de telles sources sont colossaux dans plusieurs domaines, notamment en spectroscopie, en métrologie et même en médecine. Ces dernières années, plusieurs se sont intéressés à tenter de repousser les limites d'élargissement spectral en se servant de fibres optiques fait de matériaux inhabituels tels que les verres fluorés, les verres de chalcogénure et les oxydes lourds (à base de tellure, de bismuth, de plomb ou de germanium). C'est dans ce cadre que s'inscrivent mes activités de recherche. Le but principal de ce mémoire est l'étude de la génération de supercontinuum dans l'infrarouge à partir d'impulsions femtoseconde et en se servant de fibres de ZBLAN et de As2Se3 (chalcogénure). Ce. mémoire traite donc de la théorie dernière la génération de supercontinuum en passant par le modèle de l'équation NLS, la génération d'impulsions intenses et brèves, le choix de fibre optimal ainsi que les défis techniques à relever. li passe ensuite en revue les principaux résultats obtenus expérimentalement et formule des analyses avec l'aide de simulations numériques permettant d'en arriver à une meilleure compréhension des phénomènes en jeu.
7

Conception et élaboration de composants photoniques pour l'infrarouge moyen inscrits par impulsions ultra brèves

Le Camus, Arthur January 2020 (has links)
«Thèse en cotutelle, Doctorat en physique, Université Laval, Québec, Canada, Philosophiæ doctor (Ph. D.) et Université de Bordeaux, Talence, France» / L’infrarouge moyen présente un grand intérêt pour de nombreuses applications dans des domaines variés comme la médecine, la biologie, l’environnement ou encore l’astronomie. Il y a donc un besoin de sources et de dispositifs fonctionnant dans cette bande de longueur d’onde s’étendant approximativement de 2 à 20 µm. L’élaboration de ces dispositifs passe par le développement de matériaux transparents dans l’infrarouge moyen puis par la fonctionnalisation optique de ces matériaux. Dans le cadre de cette thèse de doctorat, nous nous proposons d’étudier la fabrication de composants dans un verre d’oxyde de métaux lourds (baryum, gallium, germanium : BGG), dont l’intérêt est la combinaison d’une bonne transmission jusque dans l’IR moyen (de ~350 nm à ~5 µm) et de bonnes résistances mécanique et chimique. La technique utilisée pour la fonctionnalisation optique de ce verre est l’inscription directe par impulsions ultra courtes. Cette dernière permet de modifier localement – et de manière permanente – un matériau par la focalisation d’impulsions d’une durée de l’ordre de quelques dizaines ou centaines de femto secondes, générant des intensités lumineuses très importantes et permettant l’absorption non-linéaire d’une partie de l’énergie du faisceau laser. Le caractère non linéaire de l’interaction permet l’inscription de structures tridimensionnelles dans le volume du matériau. Grâce à cette technique, on peut notamment fabriquer des guides d’onde, des canaux de microfluidique et des motifs fluorescents pour ne citer que quelques exemples. Nous rapportons dans cette thèse une étude détaillée de l’inscription par laser femtoseconde dans différents types de verres BGG. Nous montrons qu’il est possible d’avoir un changement d’indice positif élevé, permettant la formation de composants à base de guides d’onde pour l’IR moyen. En particulier, nous présentons des résultats de mesures sur des guides d’onde et des coupleurs dans l’IR moyen, inscrits dans un verre BGG et dans la silice. Un autre type verre, dérivé des BGG et dopé en ions argents, est également étudié dans le cadre de l’inscription par laser femtoseconde. Comme il a été observé dans d’autres types de verres d’oxydes, les ions argent modifient l’interaction laser matière et apportent des propriétés spécifiques à l’argent : fluorescence, génération de seconde harmonique et résonance de plasmons de surface. / The mid-infrared region is of great interest for many applications in various fields such as medicine, biology, environment and astronomy. Therefore, there is a need for developing sources and devices operating in this wavelength region, spanning approximately from 2 to20 µm. The development of these devices involves the development of mid-IR transparent materials and then the optical functionalization of these materials. In the framework of this PhD thesis, we propose to study the fabrication of components in glass of heavy metaloxides (barium, gallium, germanium: BGG), whose interest is the combination of a good transmission (from ~350 nm to ~5 µm) and good mechanical and chemical resistances. The technique used for the optical functionalization of this glass is direct inscription by ultra-short pulses. This technique allows a local and permanent modification of a material by focusing pulses of a duration of a few tens or hundreds of femtoseconds, generating very high light intensities and allowing the non-linear absorption of the laser beam energy. The non-linear nature of the interaction allows the inscription of three-dimensional structures in the bulk. Thanks to this technique, we can produce waveguides, microfluidic channels and fluorescent patterns, to name but a few examples. In this thesis, we report a detailed study of femtosecond laser inscription in different types of BGG glasses. We show that it is possible to have a high positive index change, allowing the formation of waveguide-based components for mid-IR. In particular, we present measurements results on waveguides and couplers in the mid-IR, embedded in BGG glass and fused silica. Another type of glass derived from BGG and doped with silver ions is also studied with the femtosecond laser inscription. As observed in other types of oxide glasses, silver ions modify the laser-matter interaction and provide silver-specific properties such as fluorescence, second harmonic generation and surface plasmons resonance.
8

Génération de supercontinuum en régime femtoseconde dans l'infrarouge moyen dans des fibres optiques

Thibault-Maheu, Olivier 23 April 2018 (has links)
La génération de supercontinuum est un élargissement spectral extrême survenant dans un matériau dispersif et non linéaire comme la fibre optique. Ce phénomène est mis à profit dans plusieurs domaines comme la spectroscopie, la métrologie et la sécurité. Plusieurs de ces applications nécessitent de la lumière dans la fenêtre de transmission atmosphérique entre 3 et 5 μm. Par contre, les matériaux les plus utilisés actuellement pour la génération de supercontinuum, comme la silice et le ZBLAN, sont opaques dans cette plage spectrale, ce qui justifie l’utilisation de nouveaux matériaux ayant une transparence accrue à ces longueurs d’onde. Nous proposons donc l’utilisation de fibres de fluoroindate et de trisulfure d’arsenic pour pallier cette limitation. Les fibres fabriquées de ces matériaux possèdent des pertes intrinsèques assez faibles pour la génération de supercontinuum dans cette plage spectrale. Dans ce travail, nous avons démontré un supercontinuum très large dans la fibre de fluoroindate en la pompant avec des impulsions femtosecondes à 2,5 μm en régime de dispersion anomale. Les résultats n’ont pas été aussi prometteurs pour la fibre de chalcogénure étant donnée la dispersion fortement normale à cette longueur d’onde et son seuil de dommage très faible. / Supercontinuum generation is an extreme spectral broadening that takes place in a dispersive and nonlinear medium like an optical fiber. It has found applications in various fields such as spectroscopy, metrology and defense and security. Some of them require light with a broad spectrum covering the atmospheric transmission window between 3 and 5 μm. However, currently used fibers like silica and ZBLAN have limited transmission in this range, thus justifying the use of new materials. We propose the use of fluoroindate and arsenic trisulfide fibers to serve this purpose. Both of these materials have been drawn in fibers with very low transmission losses over this spectral range. In this work, we used femtosecond pulses to generate supercontinuum in fluoroindate and arsenic trisulfide fibers. We demontrated a very broad supercontinuum in the fluoroindate fiber using femtosecond pulses in the anomalous dispersion regime of the fiber at 2.5 μm. The results were not that promising in chalcogenide fibers because of large normal dispersion at the wavelength used and low damage threshold.
9

Conception d'un phase-mètre de type Stéréo-ATI : appareil de détection de la phase absolue d'impulsions laser ultrabrèves par stéréodétection de photoélectrons ATI

Prévost, Louis 23 April 2018 (has links)
Générer des impulsions laser attosecondes requiert l’utilisation d’impulsions laser femtosecondes focalisées dans un gaz qui produit, par rediffusion, les harmoniques du rayonnement incident. Ce processus donne naissance au spectre XUV qui composera les impulsions désirées. Leur génération est optimisée par le contrôle des paramètres qui caractérisent l’impulsion femtoseconde : puissance, durée de l’impulsion, spectre fréquentiel et phase absolue. Tous ces paramètres, sauf la phase absolue, se mesurent avec des équipements facilement disponibles. Pour mesurer la phase absolue, nous construisons un Stéréo-ATI selon le concept proposé et démontré par une équipe de recherche en 2003. Plusieurs propriétés de l’ionisation induite par impulsions femtosecondes, dont les spectres photoélectroniques, sont montrées pour expliquer le fonctionnement de l’appareil. Des simulations de spectres de temps de vol et des explications plus techniques sont utilisées pour définir les propriétés de la machine et les appareils utilisés pour monter une expérience complète de détection de phase absolue. / Attosecond laser pulse generation requires the use of femtosecond laser pulses focused in a gas which produces, by rescattering, harmonics of the incident beam. This process gives birth to the XUV spectra composing the desired pulses. Their generation is optimised by controlling the characteristic parameters of the femtosecond pulses: power, pulse duration, frequency spectra and absolute phase. All these parameters, excluding the absolute phase, can be measured with some easily available equipment. To measure the absolute phase, we build a Stereo-ATI from the concept proposed and demonstarted by a research team in 2003. Many properties of the femtosecond induced ionization, among which photoelectronic spectra, are shown to explain how the apparatus works. Simulations of time of flight spectra and some more technical explanations are used to define the apparatus properties and the equipment used to mount a complete absolute phase detection experiment.
10

Accélération d'électrons à l'aide d'impulsions laser ultrabrèves et fortement focalisées

Marceau, Vincent. 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Lorsque fortement focalisées, les impulsions laser de haute puissance génèrent des champs électromagnétiques d’amplitude gigantesque. Ces derniers peuvent être mis à profit pour accélérer des électrons à une grande énergie sur une très courte distance. Les progrès récents dans le domaine des lasers de haute puissance laissent ainsi entrevoir des perspectives excitantes dans le développement d’une nouvelle génération d’accélérateurs laser qui seraient beaucoup plus compacts et moins dispendieux que les accélérateurs d’électrons conventionnels. Parmi les différents schémas d’accélération laser proposés, l’utilisation d’impulsions laser de polarisation radiale s’avère prometteuse. Cette méthode tire profit de la composante longitudinale du champ électrique au centre d’un faisceau laser de type TM01 afin d’accélérer des électrons le long de l’axe optique. L’objectif spécifique du projet de doctorat présenté dans cette thèse est d’étudier l’accélération d’électrons par impulsions TM01 dans le régime des impulsions ultrabrèves et fortement focalisées. Dans ces conditions extrêmes, les impulsions laser doivent impérativement être modélisées à l’aide de solutions exactes aux équations de Maxwell. Nous présentons d’abord une technique permettant d’obtenir une solution exacte sous forme fermée aux équations de Maxwell pour décrire le champ électromagnétique de l’impulsion TM01. Cette solution exacte nous permet de modéliser rigoureusement la dynamique en régime d’impulsions ultrabrèves et fortement focalisées et d’en faire ressortir les caractéristiques intéressantes. Il est également mis en évidence qu’une solution exacte pour le champ électromagnétique n’est pas seulement utile en régime non paraxial, mais qu’elle est également nécessaire pour modéliser correctement la dynamique dans des conditions de faible focalisation. Une partie de cette thèse s’intéresse finalement à une application intéressante de l’accélération par impulsions TM01 ultrabrèves et fortement focalisées, soit la production d’impulsions ultrabrèves d’électrons sous-relativistes. À l’aide de simulations particle-in-cell, nous démontrons la possibilité d’accélérer des impulsions d’électrons d’une durée de l’ordre de la femtoseconde à quelques centaines de keV d’énergie lorsqu’une impulsion TM01 de quelques centaines de gigawatts est focalisée dans un gaz de faible densité. Étant situées dans la fenêtre énergétique adéquate, ces impulsions d’électrons pourraient permettre d’améliorer significativement la résolution temporelle dans les expériences d’imagerie atomique et moléculaire par diffraction électronique ultrarapide. / When focused on a tiny spot, high-power laser pulses generate gigantic electromagnetic fields. Under these strong field conditions, charged particles can be accelerated up to high energies over short distances. Recent advances in high-power laser technology hint at exciting new possibilities in the development of a new generation of laser-driven electron accelerators that are expected to offer a robust, compact, and low-cost alternative to conventional linear accelerators. Among the many proposed laser-driven acceleration schemes, the use of radially polarized laser pulses is very promising. In this method, the electrons are accelerated along the optical axis by the strong longitudinal electric field component at the center of a TM01 beam. The main objective of this thesis is to investigate electron acceleration driven by TM01 pulses under ultrashort pulse and strong focusing conditions. In this nonparaxial and ultrashort pulse regime, the laser pulses must be rigorously modeled as exact solutions to Maxwell’s equations. We first present the tools that are used to obtain an exact closed-form solution to Maxwell’s equations for a TM01 pulse. This exact solution allows us to accurately model the acceleration process and to highlight several interesting properties of the dynamics in the nonparaxial and ultrashort pulse regime. It is also shown that an exact solution is not only useful to investigate electron acceleration under nonparaxial conditions, but also necessary to correctly describe the dynamics in the weak focusing limit. A part of this thesis is also concerned with an interesting property of the acceleration driven by ultrashort and tightly focused TM01 pulses, namely the generation of ultrashort bunches of subrelativistic electrons. Using particle-in-cell simulations, we demonstrate the possibility of generating one-femtosecond electron pulses at few-hundred-keV energies when a few-hundred-GW TM01 pulse is tightly focused in a low-density gas. Since they are located in the appropriate energy window, these electron pulses could potentially lead to a significant improvement in the time resolution of atomic and molecular imaging experiments based on ultrafast electron diffraction.

Page generated in 0.1154 seconds