Return to search

Zero-Field Splitting in Gd(III) complexes : Towards a molecular understanding of paramagnetic relaxation

The prime objectives of contrast agents in Magnetic Resonance Imaging(MRI) is to accelerate the relaxation rate of the solvent water protons in the surrounding tissue. Paramagnetic relaxation originates from dipole-dipole interactions between the nuclear spins and the fluctuating magnetic field induced by unpaired electrons. Currently Gadolinium(III) chelates are the most widely used contrast agents in MRI, and therefore it is incumbent to extend the fundamental theoretical understanding of parameters that drive the relaxation mechanism in these complexes. Traditionally the Solomon-Bloembergen-Morgan equations have been utilized to describe relaxation times in terms, primarily of the Zeeman interaction, which is the splitting of degenerate energy levels due to an applied magnetic field. However, in compounds such as Gadolinium(III) complexes with total electron spins higher than 1 (in this case S=7/2) other interactions such as the Zero-Field Splitting(ZFS) play a significant role. ZFS is the splitting of degenerate energy levels in the absence of an external magnetic field. For this purpose, the current research delves into an understanding of the relaxation process, focusing on ZFS in various complexes of interest, using quantum chemical methods as well as molecular dynamic simulations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-125107
Date January 2015
CreatorsKhan, Shehryar
PublisherStockholms universitet, Fysikum, Stockholm : Department of Physics, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/EC/FP7/1058817

Page generated in 0.0022 seconds