Return to search

Representation and Reconstruction of Linear, Time-Invariant Networks

Network reconstruction is the process of recovering a unique structured representation of some dynamic system using input-output data and some additional knowledge about the structure of the system. Many network reconstruction algorithms have been proposed in recent years, most dealing with the reconstruction of strictly proper networks (i.e., networks that require delays in all dynamics between measured variables). However, no reconstruction technique presently exists capable of recovering both the structure and dynamics of networks where links are proper (delays in dynamics are not required) and not necessarily strictly proper.The ultimate objective of this dissertation is to develop algorithms capable of reconstructing proper networks, and this objective will be addressed in three parts. The first part lays the foundation for the theory of mathematical representations of proper networks, including an exposition on when such networks are well-posed (i.e., physically realizable). The second part studies the notions of abstractions of a network, which are other networks that preserve certain properties of the original network but contain less structural information. As such, abstractions require less a priori information to reconstruct from data than the original network, which allows previously-unsolvable problems to become solvable. The third part addresses our original objective and presents reconstruction algorithms to recover proper networks in both the time domain and in the frequency domain.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-8402
Date01 April 2019
CreatorsWoodbury, Nathan Scott
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0016 seconds