Return to search

Latent Data-Structures for Complex State Representation : A Steppingstone to Generating Synthetic 5G RAN data using Deep Learning

The aim of this thesis is to investigate the feasibility of applying generative deep learning models on data related to 5G Radio Access Networks (5GRAN). Simulated data is used in order to develop the generative models, and this project serves as a proof of concept for further applications on real data. A Long Short-Term Memory network based Variational Autoencoder (VAE), Regularised Autoencoder (RAE) with a Gaussian Mixture prior and a Gradient Penalty Wasserstein Generative Adversarial Network (GP-WGAN) are fit by using the collected dataset. Their performance is evaluated in their ability to generate samples that resembles the real distribution and characteristics of the training data. Moreover, the performance is also measured in usability. The results indicates that it is indeed feasible to generate synthetic data given the current dataset, where the RAE and VAE seem to outperform the GP-WGAN in all tests, however, there is no clear best performer between RAE and VAE. Finally, whether the current models function on real 5G RAN data is not known and left for future work. Another topic of interest would be to improve the current models with conditional generation or other types of architectures.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-504453
Date January 2023
CreatorsHäggström, Jakob
PublisherUppsala universitet, Högenergifysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 23037

Page generated in 0.0018 seconds