Today, worldwide business communities are in the era of the Supply Chains. A Supply Chain is a collection of several independent enterprises that partner together to achieve specific goals. These enterprises may plan, source, produce, deliver, or transport materials to satisfy an immediate or projected market demand, and may provide the after sales support, warranty services, and returns. Each enterprise in the Supply Chain has roles and elements. The roles include supplier, customer, or carrier and the elements include functional units, processes, information, information resources, materials, objects, decisions, practices, and performance measures. Each enterprise, individually, manages these elements in addition to their flows, their interdependencies, and their complex interactions. Since a Supply Chain brings several enterprises together to complement each other to achieve a unified goal, the elements in each enterprise have to complement each other and have to be managed together as one unit to achieve the unified goal efficiently. Moreover, since there are a large number of elements to be defined and managed in a single enterprise, then the number of elements to be defined and managed when considering the whole Supply Chain is massive. The supply chain community is using the Supply Chain Operations Reference model (SCOR model) to define their supply chains. However, the SCOR model methodology is limited in defining the supply chain. The SCOR model defines the supply chain in terms of processes, performance metrics, and best practices. In fact, the supply chain community, SCOR users in particular, exerts massive effort to render an adequate supply chain definition that includes the other elements besides the elements covered in the SCOR model. Also, the SCOR model is delivered to the user in a document, which puts a tremendous burden on the user to use the model and makes it difficult to share the definition within the enterprise or across the supply chain. This research is directed towards overcoming the limitations and shortcomings of the current supply chain definition methodology. This research proposes a methodology and a tool that will enable an automated and comprehensive definition of the Supply Chain at any level of details. The proposed comprehensive definition methodology captures all the constituent parts of the Supply Chain at four different levels which are, the supply chain level, the enterprise level, the elements level, and the interaction level. At the Supply Chain level, the various enterprises that constitute the supply chain are defined. At the enterprise level, the enterprise elements are identified. At the enterprises' elements level, each element in the enterprise is explicitly defined. At the interaction level, the flows, interdependence, and interactions that exist between and within the other three levels are identified and defined. The methodology utilized several modeling techniques to generate generic explicit views and models that represents the four levels. The developed views and models were transformed to a series of questions and answers, where the questions correspond to what a view provides and the answers are the knowledge captured and generated from the view. The questions and answers were integrated to render a generic multi-view of the supply chain. The methodology and the multi-view were implemented in an ontology-based tool. The ontology includes sets of generic supply chain ontological components that represent the supply chain elements and a set of automated procedures that can be utilized to define a specific supply chain. A specific supply chain can be defined by re-using the generic components and customizing them to the supply chain specifics. The ontology-based tool was developed to function in the supply chain dynamic, information intensive, geographically dispersed, and heterogeneous environment. To that end, the tool was developed to be generic, sharable, automated, customizable, extensible, and scalable.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1314 |
Date | 01 January 2005 |
Creators | Fayez, Mohamed |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0025 seconds