Return to search

The role of p53 in drug and interferon sensitivity of human osteosarcoma Saos-2 cells.

Wong Pak Cheung Ronald. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 121-142). / Abstracts in English and Chinese. / Acknowledgement --- p.I / Abstract --- p.II / Abbreviation --- p.VI / List of figures --- p.IX / List of tables --- p.XI / Content --- p.XII / Content / Chapter Chapter 1: --- General Introduction --- p.1 / Chapter 1.1 --- The p53 tumor suppressor gene --- p.2 / Chapter 1.1.1 --- Structure and function --- p.2 / Chapter 1.1.2 --- Regulation of p53 stability and activity --- p.3 / Chapter 1.1.3 --- p53 and cell cycle arrest --- p.4 / Chapter 1.1.4 --- p53 and apoptosis --- p.4 / Chapter 1.2 --- Mutation in p53 gene --- p.9 / Chapter 1.2.1 --- Loss of function through dominant negative effect --- p.9 / Chapter 1.2.2 --- Gain-of-function through transactivation by mutant p53 --- p.10 / Chapter 1.2.3 --- Mutation in p53 and resistance to cancer therapy --- p.10 / Chapter 1.3 --- Objective of the study --- p.14 / Chapter Chapter 2: --- Mutant p53 induced interferon resistance and its regulation of the Jak/Stat pathway --- p.15 / Chapter 2.1 --- Introduction --- p.16 / Chapter 2.1.1 --- IFN classification and biological activities --- p.16 / Chapter 2.1.2 --- IFN signaling --- p.17 / Chapter 2.1.3 --- IFN direct antitumor effect: cell cycle arrest and apoptosis --- p.18 / Chapter 2.1.4 --- IFN in immunotherapy --- p.20 / Chapter 2.1.5 --- Resistance to IFN therapy --- p.21 / Chapter 2.2 --- Materials and Methods --- p.24 / Chapter 2.2.1 --- Cell lines --- p.24 / Chapter 2.2.2 --- Drugs and antibodies --- p.24 / Chapter 2.2.3 --- Cell Proliferation assay- MTT assay --- p.24 / Chapter 2.2.4 --- Cell cycle analysis --- p.25 / Chapter 2.2.5 --- DNA fragmentation assay --- p.25 / Chapter 2.2.6 --- Western blot analysis --- p.26 / Chapter 2.2.7 --- "Combined treatment of IFNs and Jak inhibitors in MTT assay, DNA fragmentation assay and Western blot analysis" --- p.26 / Chapter 2.3 --- Results --- p.27 / Chapter 2.3.1 --- Mutant p53-V143A and p53-R273H induced IFN resistance: the role of IFN induced apoptosis and cell cycle arrest --- p.27 / Chapter 2.3.2 --- IFN induction of apoptosis: a p53-independent and caspase-dependent pathway --- p.28 / Chapter 2.3.3 --- Mutant p53 regulation of Jak/Stat pathway --- p.36 / Chapter 2.3.4 --- Janus kinases (Jaks) and IFN-alpha sensitivity in Saos-2 cells --- p.41 / Chapter 2.3.5 --- Janus kinases (Jaks) and IFN-gamma sensitivity --- p.49 / Chapter 2.4 --- Discussion --- p.56 / Chapter 2.4.1 --- Mutant p53-V143 and p53-R273H induced IFN resistance in Saos-2 cells --- p.56 / Chapter 2.4.2 --- Role of Jaks in IFN sensitivity in Saos-2 cells --- p.57 / Chapter 2.4.3 --- IFN signaling in Saos-2 cells --- p.57 / Chapter 2.4.4 --- Jak2 and IFN induced apoptosis --- p.58 / Chapter Chapter 3: --- Mutant p53 induced drug resistance --- p.60 / Chapter 3.1 --- Introduction --- p.61 / Chapter 3.1.1 --- The multidrug resistance (MDR) --- p.61 / Chapter 3.1.2 --- Anticancer drugs used in the study: action mechanisms and resistance --- p.67 / Chapter 3.1.3 --- Jak/Stat pathway and MDR --- p.68 / Chapter 3 .2 --- Materials and Methods --- p.72 / Chapter 3.2.1 --- Cell lines --- p.72 / Chapter 3.2.2 --- Drugs and antibodies --- p.72 / Chapter 3.2.3 --- Caspase 3 activity assay --- p.72 / Chapter 3.2.4 --- Cell Proliferation assay- MTT assay --- p.73 / Chapter 3.2.5 --- Cell cycle analysis --- p.73 / Chapter 3.2.6 --- DNA fragmentation assay --- p.73 / Chapter 3.2.7 --- Reverse transcription polymerase chain reaction --- p.73 / Chapter 3.2.8 --- Western blot analysis --- p.74 / Chapter 3.2.9 --- "Combined treatment of IFNs and Jak inhibitors in MTT assay, DNA fragmentation assay and Western blot analysis" --- p.74 / Chapter 3.3 --- Results --- p.75 / Chapter 3.3.1 --- Mutant p53 and drug sensitivity --- p.75 / Chapter 3.3.2 --- Mutant p53 and drug induced apoptosis and cell cycle arrest --- p.75 / Chapter 3.3.3 --- Classical drug resistance factors in mutant p53 induced drug resistance --- p.87 / Chapter 3.3.4 --- The role of Jaks in drug sensitivity of Saos-2 cells --- p.89 / Chapter 3.3.5 --- The role of Jaks in drug induced DNA fragmentationin Saos-2 cells --- p.89 / Chapter 3.3.6 --- Jak signaling and caspase activation in MTX induced apoptosis in Saos-2 cells --- p.100 / Chapter 3.3 --- Discussion --- p.108 / Chapter 3.3.1 --- Mutant p53-V143A and p53-R273H induced drug resistance in Saos-2 cells --- p.108 / Chapter 3.3.2 --- Role of Jaks in drug sensitivity in Saos-2 cells --- p.109 / Chapter 3.3.3 --- Jak/Stat signaling in Saos-2 cells --- p.109 / Chapter 3.3.4 --- Jak2 and MTX induced apoptosis --- p.110 / Chapter Chapter 4: --- General discussion --- p.112 / Chapter 4.1 --- Mutant p53 induced immunotherapy and chemotherapy resistance --- p.113 / Chapter 4.2 --- Gain of new function of mutant p53-V143A and p53-R273H in regulating Jak/Stat pathway leading to resistance to IFN and chemotherapeutic drugs --- p.114 / Chapter 4.3 --- The role of Jaks in MTX sensitivity --- p.114 / Chapter 4.4 --- Future work --- p.115 / Chapter 4.5 --- Perspective --- p.120 / References --- p.121

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324609
Date January 2004
ContributorsWong, Pak Cheung Ronald., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiv, 142 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0023 seconds