Return to search

Stratigraphic characterisation of the Collingham formation in the context of shale gas from a borehole (SFT 2) near Jansenville, Eastern Cape, South Africa

This study is an extensive lithological, petrographical, mineralogical and geochemical description of fresh Collingham Formation core samples collected from borehole SFT 2, located on the farm Slangfontein, south of Jansenville in the Eastern Cape, South Africa. The borehole, drilled to 295 m on the northerly limb of a shallow westerly plunging syncline, intersected the lower Ecca Group rocks of the Ripon, Collingham, Whitehill and Prince Albert Formations and terminated in the upper Dwyka Group. A comprehensive log and stratigraphic column were compiled for the Collingham Formation and fresh core samples were analysed using X-Ray Diffraction (“XRD”), X-Ray Fluorescence (“XRF”), mercury porosimetry, and Total Organic Carbon (“TOC”). Thin section microscopy and Scanning Electron Microscopy (“SEM”) analyses were carried out on selected samples of core from borehole SFT 2. The matrix supported, massive to laminated lithological units of the Collingham Formation are interpreted as detrital, terrigenous sediments. These sediments are composed of intercalated fine-grained, poorly sorted, non-fissile mudstone; fine- to very fine-grained, predominantly pyroclastic airfall tephra; and less common fine-grained sandstones. Sediments of the Collingham Formation are considered to be immature, composed primarily of clay and aluminosilicates. The predominance of a clay fraction and aluminosilicates in mudstone samples is indicated by elevated K2O/Al2O3 ratio values, and the relationship of Zr, Al2O3 and TiO2. The presence of glauconite within the Collingham Formation indicates deposition in a mildly alkaline, slightly reducing marine environment. Rb/K ratio values (1.9 – 2.3 x 10-3) indicate brackish to slightly marine conditions, while low Zr/Rb ratio values indicate a low hydro-energy environment, with stable bottom water conditions. Hf and Nb concentrations indicate that detrital input was greatest during the deposition of tuffaceous units; while stable mineral assemblages and a low Fe2O3/K2O ratio values indicate deposition close to the source. A variation in Si/Ca values indicate times when sediments were affected by turbidity, interspersed with times of relative quiescence. The predominance of K2O over Na2O indicates that the Collingham Formation is alkali-rich, while SiO2/Al2O3 ratio values and the relationship of Zr, Al2O3 and TiO2 indicate that sediments are immature. In the lower portion of the formation, non-sulphidic, anoxic conditions are indicated by Mn/Al, V/(V+Ni), V/Cr ratio values, the Fe-Mn- V content, and the correlation between V and TOC. The upper portion of the formation is considered dysoxic, due to the presence and distribution of pyrite framboids, which indicate a fluctuating O2 level, likely indicating deposition at the interface between anoxic and slightly more oxic conditions. V/Cr ratio values indicate that the O2 regime was lowest during the deposition of the mudstones. The Chemical Index of Alteration (“CIA”) indicates a consistent weathering regime throughout the deposition of the Collingham Formation, associated with a temperate climate on the interface between glacial and tropical conditions. Although an anoxic and low hydro-energy environment is generally favourable for hydrocarbon accumulation, the Collingham Formation contains low levels of Total Organic Carbon (well below 0.9 per cent) and low porosities (ranging from 0.35 per cent to a maximum of 2.22 per cent), both of which are characteristic of a poor source for gas accumulation. Due to the laminate nature, permeability and fracturability of the Collingham Formation, there is the potential that the formation may form a good sealing sequence to the potentially gas-rich Whitehill Formation below. The metamorphic impact related to the Cape Orogeny (± 250 Ma), and reflected in the textures of the minerals making up the sediments of the Collingham Formation, suggests the enhancement in the sealing efficiency of this formation.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10676
Date January 2015
CreatorsBlack, Dawn Ebony
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatxii, 184 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0024 seconds