Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2015-12-07T14:49:44Z
No. of bitstreams: 1
texto completo.pdf: 1033765 bytes, checksum: c29a4e06e4fb3562903464b018806e16 (MD5) / Made available in DSpace on 2015-12-07T14:49:44Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1033765 bytes, checksum: c29a4e06e4fb3562903464b018806e16 (MD5)
Previous issue date: 2015-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Seja S uma superfície Riemann compacta, orientável, de gênero g ≥ 2. Uma sístole de S, é uma geodésica fechada, não-contrátil, de menor comprimento sobre S. Encontrar os valores desses comprimentos para todas as sístoles de uma superfície S é muito difícil, e da ́ o interesse em buscar seus limitantes inferiores e superiores. Bers [9] mostrou que toda superfície de Riemann de gênero de possui 3g − 3 geodésicas fechadas simples e disjuntas que podem ser majoradas por uma constante B(g) chamada de constante de Bers onde ela só depende do gênero da superfície. Em [11], foi apresentado limitantes para esta constante B(g), a saber: B(g) : 6g − 2 ≤ B(g) ≤ 26(g − 1). Bavard, [5], em seu trabalho obteve um limite máximo, relacionado à tesselação {12g − 6, 3}, para o raio de injetividade sobre uma superfície de Riemann ≥ 2, tal que para g = 2 esse limite permite majorar o comprimento das geodésicas fechadas por 2 arccosh(2, 88). Neste trabalho nós apresentaremos alguns resultados sobre sístoles em superfícies e avaliamos um tipo de sístoles de superfícies relacionadas a tesselação {8g − 4, 4} para g ≥ 2. / Let S be a compact Riemann surface, orientable, of genus g ≥ 2. A systole of S, is a closed, non-contractile geodesic, of smaller length on S. Finding the values of these lengths for all systoles of a surface S is very difficult, and hence the interest in get your lower and upper limiting. Bers [9] shows that every Riemann surface of genus of g has 3g − 3 disjoint simple closed geodesics that can be increased by a constant B(g) constant call of Bers where she only depends on the genus of the surface. In [11], was √ presented for limiting this constant (g) B, namely: B(g) : 6g − 2 ≤ B(g) ≤ 26(g − 1). Bavard, [5], in his work earned a maximum limit, related to tessellation {12g − 6, 3} for the injetividade radius on a Riemann surface ≥ 2, such that for g = 2 this limit allows you to increase the length of the geodesic closed for 2 arccosh(2, 88). This work we will present some results on s ́ ıstoles on surfaces and evaluate a type of surface tessellation related s ́ ıstoles {8g − 4, 4} for g ≥ 2.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:123456789/6911 |
Date | 27 February 2015 |
Creators | Drumond, Flávio Guilherme de Abreu |
Contributors | Faria, Mercio Botelho |
Publisher | Universidade Federal de Viçosa |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFV, instname:Universidade Federal de Viçosa, instacron:UFV |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds