Return to search

Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann

Made available in DSpace on 2015-04-09T12:28:21Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-03-28Bitstream added on 2015-04-09T12:48:18Z : No. of bitstreams: 1
000809982.pdf: 1238279 bytes, checksum: 51811e33aad5834491b25013aa77ba4b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo desde trabalho e estimar um cota para o n umero de pontos racionais de uma curva. Observando as várias semelhanças entre o anel dos inteiros e o anel dos polinômios em uma variável, iremos usar ferramentas da teoria dos números para resolver um problema da geometria algébrica. Desta fusão nasce uma das mais nobres areas da matemática: a geometria aritmética. Fazendo uso do célebre teorema de Riemann-Roch e das ferramentas da teoria dos números demonstraremos a hipótese de Riemann para a funço-zeta de uma curva não singular e qual consequência tal hipótese tem para a contagem de pontos racionais de uma curva / The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of a nonsingular curve and which consequence this hypothesis has to count rational points on a curve

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/122107
Date28 March 2014
CreatorsSilva Junior, Roberto Carlos Alvarenga da [UNESP]
ContributorsUniversidade Estadual Paulista (UNESP), Salehyan, Parham [UNESP]
PublisherUniversidade Estadual Paulista (UNESP)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format197 f. : il.
SourceAleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP
Rightsinfo:eu-repo/semantics/openAccess
Relation-1, -1

Page generated in 0.0023 seconds