• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann

Silva Junior, Roberto Carlos Alvarenga da [UNESP] 28 March 2014 (has links) (PDF)
Made available in DSpace on 2015-04-09T12:28:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-03-28Bitstream added on 2015-04-09T12:48:18Z : No. of bitstreams: 1 000809982.pdf: 1238279 bytes, checksum: 51811e33aad5834491b25013aa77ba4b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo desde trabalho e estimar um cota para o n umero de pontos racionais de uma curva. Observando as várias semelhanças entre o anel dos inteiros e o anel dos polinômios em uma variável, iremos usar ferramentas da teoria dos números para resolver um problema da geometria algébrica. Desta fusão nasce uma das mais nobres areas da matemática: a geometria aritmética. Fazendo uso do célebre teorema de Riemann-Roch e das ferramentas da teoria dos números demonstraremos a hipótese de Riemann para a funço-zeta de uma curva não singular e qual consequência tal hipótese tem para a contagem de pontos racionais de uma curva / The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of a nonsingular curve and which consequence this hypothesis has to count rational points on a curve
2

Zeros da função zeta de Riemann e o teorema dos números primos

Oliveira, Willian Diego [UNESP] 27 August 2013 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-27Bitstream added on 2014-11-10T11:57:47Z : No. of bitstreams: 1 000790334.pdf: 810310 bytes, checksum: 6b4745fecf139000095121300a854540 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Estudamos várias propriedades da função zeta de Riemann. Três provas do Teorema dos Números Primos foram fornecidas. Resultados clássicos sobre regiões livres de zeros da função zeta, bem como sua relação com o termo do erro no Teorema dos Números Primos, foram estudados em detalhes / We studied various properties of the Riemann’s zeta function. Three proofs of the Prime Number Theorem were provides. Classical results on zero-free region of the zeta function, as well as their relation to the error term in the Prime Number Theorem, were studied in details
3

Zeros da função zeta de Riemann e o teorema dos números primos /

Oliveira, Willian Diego. January 2013 (has links)
Orientador: Dimitar Kolev Dimitrov / Banca: Ali Messaoudi / Banca: Nicolau Corcao Saldanha / Resumo: Estudamos várias propriedades da função zeta de Riemann. Três provas do Teorema dos Números Primos foram fornecidas. Resultados clássicos sobre regiões livres de zeros da função zeta, bem como sua relação com o termo do erro no Teorema dos Números Primos, foram estudados em detalhes / Abstract: We studied various properties of the Riemann's zeta function. Three proofs of the Prime Number Theorem were provides. Classical results on zero-free region of the zeta function, as well as their relation to the error term in the Prime Number Theorem, were studied in details / Mestre
4

Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann /

Silva Junior, Roberto Carlos Alvarenga da. January 2014 (has links)
Orientador: Parham Salehyan / Banca: Eduardo Tengan / Banca: Trajano Pires da Nóbrega Neto / Resumo: O objetivo desde trabalho e estimar um cota para o n umero de pontos racionais de uma curva. Observando as várias semelhanças entre o anel dos inteiros e o anel dos polinômios em uma variável, iremos usar ferramentas da teoria dos números para resolver um problema da geometria algébrica. Desta fusão nasce uma das mais nobres areas da matemática: a geometria aritmética. Fazendo uso do célebre teorema de Riemann-Roch e das ferramentas da teoria dos números demonstraremos a hipótese de Riemann para a funço-zeta de uma curva não singular e qual consequência tal hipótese tem para a contagem de pontos racionais de uma curva / Abstract: The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of a nonsingular curve and which consequence this hypothesis has to count rational points on a curve / Mestre
5

Fórmulas explícitas em teoria analítica de números / Explicit formula in analytic theory of numbers

Castro, Danilo Elias 10 October 2012 (has links)
Em Teoria Analítica de Números, a expressão \"Fórmula Explícita\" se refere a uma igualdade entre, por um lado, uma soma de alguma função aritmética feita sobre todos os primos e, por outro lado, uma soma envol- vendo os zeros não triviais da função zeta de Riemann. Essa igualdade não é habitual em Teoria Analítica de Números, que trata principalmente de aproximações assintóticas de funções aritméticas e não de fórmulas exatas. A expressão se originou do trabalho seminal de Riemann, de 1859, onde aparece uma expressão exata para a função (x), que conta o número de primos que não excedem x. A prova do Teorema dos Números Primos, de Hadamard, também se baseia numa fórmula explícita de (x) (função de Tschebycheff). Mais recentemente, o trabalho de André Weil reforçou o inte- resse em compreender-se melhor a natureza de tais fórmulas. Neste trabalho, apresentaremos a fórmula explícita de Riemann-von Mangoldt, a de Delsarte e um caso particular da fórmula explícita de Weil. / In the field of Analytic Theory of Numbers, the expression \"Explicit For- mula\" refers to an equality between, on one hand, the sum of some arithmetic function over all primes and, on the other, a sum over the non-trivial zeros of Riemann s zeta function. This equality is not common in the analytic theory of numbers, that deals mainly with asymptotic approximations of arithmetic functions, and not of exact formulas. The expression originated of Riemann s seminal work, of 1859, in which we see an exact expression for the function (x), that counts the number of primes that do not exceed x. The proof of the Prime Number Theorem, by Hadamard, is also based on an explicit formula of (x) (Tschebycheff s function). More recently, the work of André Weil increased the interest in better comprehending the nature of such formulas. In this work, we shall present the Riemann-von Mangoldt formula, Delsarte s explicit formula, and one particular case of Weil s explicit formula.
6

Hipótese de Riemann e física / Riemann hypothesis and physics

Alvites, José Carlos Valencia 05 March 2012 (has links)
Neste trabalho, introduzimos a função zeta de Riemann \'ZETA\'(s), para s \'PERTENCE\' C \\ e apresentamos muito do que é conhecido como justificativa para a hipótese de Riemann. A importância de \'ZETA\' (s) para a teoria analítica dos números é enfatizada e fornecemos uma prova conhecida do Teorema dos Números Primos. No final, discutimos a importância de \'ZETA\'(s) para alguns modelos físicos de interesse e concluimos descrevendo como a hipótese de Riemann pode ser acessada estudando estes sistemas / In this work, we introduce the Riemann zeta function \'ZETA\'(s), s \'IT BELONGS\' C \\ and present much of what is known to support the Riemann hypothesis. The importance of \'ZETA\'(s) to the Analytic number theory is emphasized and a proof for the Prime Number Theorem is reviewed. In the end, we report on the importance of \'ZETA\'(s) to some relevant physical models and conclude by describing how the Riemann Hypothesis can be accessed by studying these systems
7

Hipótese de Riemann e física / Riemann hypothesis and physics

José Carlos Valencia Alvites 05 March 2012 (has links)
Neste trabalho, introduzimos a função zeta de Riemann \'ZETA\'(s), para s \'PERTENCE\' C \\ e apresentamos muito do que é conhecido como justificativa para a hipótese de Riemann. A importância de \'ZETA\' (s) para a teoria analítica dos números é enfatizada e fornecemos uma prova conhecida do Teorema dos Números Primos. No final, discutimos a importância de \'ZETA\'(s) para alguns modelos físicos de interesse e concluimos descrevendo como a hipótese de Riemann pode ser acessada estudando estes sistemas / In this work, we introduce the Riemann zeta function \'ZETA\'(s), s \'IT BELONGS\' C \\ and present much of what is known to support the Riemann hypothesis. The importance of \'ZETA\'(s) to the Analytic number theory is emphasized and a proof for the Prime Number Theorem is reviewed. In the end, we report on the importance of \'ZETA\'(s) to some relevant physical models and conclude by describing how the Riemann Hypothesis can be accessed by studying these systems

Page generated in 0.0483 seconds