• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fórmulas explícitas em teoria analítica de números / Explicit formula in analytic theory of numbers

Castro, Danilo Elias 10 October 2012 (has links)
Em Teoria Analítica de Números, a expressão \"Fórmula Explícita\" se refere a uma igualdade entre, por um lado, uma soma de alguma função aritmética feita sobre todos os primos e, por outro lado, uma soma envol- vendo os zeros não triviais da função zeta de Riemann. Essa igualdade não é habitual em Teoria Analítica de Números, que trata principalmente de aproximações assintóticas de funções aritméticas e não de fórmulas exatas. A expressão se originou do trabalho seminal de Riemann, de 1859, onde aparece uma expressão exata para a função (x), que conta o número de primos que não excedem x. A prova do Teorema dos Números Primos, de Hadamard, também se baseia numa fórmula explícita de (x) (função de Tschebycheff). Mais recentemente, o trabalho de André Weil reforçou o inte- resse em compreender-se melhor a natureza de tais fórmulas. Neste trabalho, apresentaremos a fórmula explícita de Riemann-von Mangoldt, a de Delsarte e um caso particular da fórmula explícita de Weil. / In the field of Analytic Theory of Numbers, the expression \"Explicit For- mula\" refers to an equality between, on one hand, the sum of some arithmetic function over all primes and, on the other, a sum over the non-trivial zeros of Riemann s zeta function. This equality is not common in the analytic theory of numbers, that deals mainly with asymptotic approximations of arithmetic functions, and not of exact formulas. The expression originated of Riemann s seminal work, of 1859, in which we see an exact expression for the function (x), that counts the number of primes that do not exceed x. The proof of the Prime Number Theorem, by Hadamard, is also based on an explicit formula of (x) (Tschebycheff s function). More recently, the work of André Weil increased the interest in better comprehending the nature of such formulas. In this work, we shall present the Riemann-von Mangoldt formula, Delsarte s explicit formula, and one particular case of Weil s explicit formula.
2

Stochastické evoluční rovnice s multiaplikativním frakcionálním šumem / Stochastic evolution equations with multiplicative fractional noise

Šnupárková, Jana January 2012 (has links)
Title: Stochastic evolution equations with multiplicative fractional noise Author: Jana Šnupárková Departement: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Bohdan Maslowski, DrSc. Supervisor's e-mail address: maslow@karlin.mff.cuni.cz Abstract: The fractional Gaussian noise is a formal derivative of a fractional Brownian motion with Hurst parameter H ∈ (0, 1). An explicit formula for a solution to stochastic differential equations with a multiplicative fractional Gaussian noise in a separable Hilbert space is given. The large time behaviour of the solution is studied. In addition, equations of this type with a nonlinear perturbation of a drift part are investigated in the case H > 1/2. Keywords: Fractional Brownian Motion, Stochastic Differential Equations in Hilbert Space, Explicit Formula for Solution
3

Prime number races

Haddad, Tony 08 1900 (has links)
Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de x ont une densité logarithmique d’environ 99,59%. En général, l’étude de la différence #{p < x : p dans A} − #{p < x : p dans B} pour deux sous-ensembles de nombres premiers A et B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre les nombres premiers p tels que 2p + 1 est aussi premier (aussi appelés nombres premiers de Sophie Germain) et les nombres premiers p tels que 2p − 1 est aussi premier. Pour ce faire, nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers 3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie Germain. / Under the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, Rubinstein and Sarnak proved that the values of x which have more prime numbers less than or equal to x of the form 4n + 3 than primes of the form 4n + 1 have a logarithmic density of approximately 99.59%. In general, the study of the difference #{p < x : p in A} − #{p < x : p in B} for two subsets of the primes A and B is called the prime number race between A and B. In this thesis, we will analyze the prime number race between the primes p such that 2p + 1 is also prime (these primes are called the Sophie Germain primes) and the primes p such that 2p − 1 is also prime. To understand this, we first present Rubinstein and Sarnak’s analysis to understand where the bias between primes that are 1 (mod 4) and the ones that are 3 (mod 4) comes from and give a conjecture on the distribution of Sophie Germain primes.

Page generated in 0.044 seconds