Orientador: Parham Salehyan / Banca: Eduardo Tengan / Banca: Trajano Pires da Nóbrega Neto / Resumo: O objetivo desde trabalho e estimar um cota para o n umero de pontos racionais de uma curva. Observando as várias semelhanças entre o anel dos inteiros e o anel dos polinômios em uma variável, iremos usar ferramentas da teoria dos números para resolver um problema da geometria algébrica. Desta fusão nasce uma das mais nobres areas da matemática: a geometria aritmética. Fazendo uso do célebre teorema de Riemann-Roch e das ferramentas da teoria dos números demonstraremos a hipótese de Riemann para a funço-zeta de uma curva não singular e qual consequência tal hipótese tem para a contagem de pontos racionais de uma curva / Abstract: The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of a nonsingular curve and which consequence this hypothesis has to count rational points on a curve / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000809982 |
Date | January 2014 |
Creators | Silva Junior, Roberto Carlos Alvarenga da. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumos em português e inglês |
Detected Language | Portuguese |
Type | text |
Format | 197 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0018 seconds