Return to search

Methods for Covariance Matrix Estimation : A Comparison of Shrinkage Estimators in Financial Applications

This paper explores different covariance matrix estimators in application to geometric Brownian motion. Particular interest is given to shrinkage estimation methods. In collaboration with Söderberg & Partners risk management team, the goal is to find an estimation that performs well in low-data scenarios and is robust against erroneous model assumptions, particularly the Gaussian assumption of the stock price distribution. Estimations are compared by two criteria: Frobenius norm distance between the estimate and the true covariance matrix, and the condition number of the estimate. By considering four estimates — the sample covariance matrix, Ledoit-Wolf, Tyler M-estimator, and a novel Tyler-Ledoit-Wolf (TLW) estimator — this paper concludes that the TLW estimator performs best when considering the two criteria.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-348639
Date January 2024
CreatorsSpector, Erik
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2024:248

Page generated in 0.0021 seconds