Return to search

Tagging methods as a tool to investigate histone H3 methylation dynamics in mouse embryonic stem cells

Covalent modification of histones is an important factor in the regulation of the chromatin structure implicated in DNA replication, repair, recombination, and transcription, as well as in RNA processing. In recent years, histone methylation has emerged as one of the key modifications regulating chromatin function. However, the mechanisms involved are complex and not well understood. Histone 3 lysine 4 (H3K4) methylation is deposited by a family of histone H3K4 methyltransferases (HMTs) that share a conserved SET domain. In mammalian cells, six family members have been characterized: Setd1a and Setd1b (the mammalian orthologs of yeast Set1) and four Mixed lineage leukemia (Mll) family HMTs, which share limited similarity with yeast Set1 beyond the SET domain. Several studies demonstrated that the H3K4 methyltransferases exist as multiprotein complexes. To functionally dissect H3K4 methyltransferase complexes, GFP tagging of the core subunit Ash2l and the complex-specific subunits Cxxc1 and Wdr82 (Setd1a/b complexes) Men1 (Mll1/2 complexes), and Ptip (Mll3/Mll4 complexes), was used. The fusion proteins were successfully expressed in mouse embryonic stem cells (ES cells), analyzed by confocal microscopy, Mass Spectrometry (MS) and ChIP-seq. Ptip was the only subunit able to bind mitotic chromatin. Additionally, both Ptip and Wdr82 were found to associate with cell cycle regulators, suggesting a possible role of the two proteins or respective complexes in cell cycle regulation.
Mass Spectrometry revealed that Wdr82 and Ptip interact with members of he PAF complex, and ChIP-seq showed that Wdr82, Cxxc1 and Ptip positively modulate pluripotency genes. Thus, Setd1a/b and Mll3/4 complexes might act together in the regulation of embryonic stem cells identity. Protein pull downs identified at least one new Setd1a/b interactor, Bod1l that is orthologous to the yeast protein Sgh1, a component of the Set1C complex. Furthermore, our MS and ChIP-seq data suggested that only Mll2 complex binds to bivalent promoters, wheras Mll2 and Setd1a complexes might function together in a set of promoters.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-70526
Date20 July 2011
CreatorsCiotta, Giovanni
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Francis Stewart, Prof. Francis Stewart, Prof. Constanze Bonifer
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0054 seconds