Return to search

The effects of Panax notoginseng extracts and its components on TNF-alpha induced MMP-9 expression and activity

Matrix metalloproteinase (MMP) induced extra cellular matrix (ECM) degradation is a crucial process involved in the development of many chronic inflammatory diseases, including cardiac remodeling and cancer metastasis. In cardiac remodeling, the presence of pathological stimuli leads to elevated MMP-9 expression and impairment of cardiac performance, which subsequently develops into heart failure. While in tumorgenesis, MMP-9 has been found to play key roles in metastasis, as it can break physical barriers for the tumor. Therefore, searching for agents targeting MMP-9 is a new direction for the treatment of cardiac remodeling and cancer metastasis.

Chinese herbal medicine is becoming increasingly used worldwide in recent decades. In the past twenty years, as many highly selective and sensitive bioassays were introduced into the bioactive compounds screening from herbal medicine, more than one hundred new drug candidates have been identified. Therefore, herbal medicine is a potential source of bioactive compounds. Panax notoginseng (PNG) is one of the most common traditional Chinese medicines to treat cardiovascular diseases, and it was also reported to have anti-cancer effect. We hypothesized that it contains bioactive compounds that could inhibit MMP-9 activity in cardiomyocytes and cancer cells.

In order to examine the effect of PNG on cardiac remodeling and cancer metastasis, we employed TNF-α induced MMP-9 in H9c2 cell (a rat cardiomyocyte) and HepG-2 cell (a human hepatoma cell) as an in vitro assay, respectively. PNG was first extracted by four different extraction methods according to the polarity of the solvent. The most effective fraction in suppressing MMP-9 activity in TNF-α induced H9c2 cell was chosen for further separation by silica gel column chromatography and high performance liquid chromatography (HPLC) until a single compound was isolated. According to the result of spectroscopic analysis by NMR, the compound was identified as ginsenoside Rb1. For the bioactivity assays, real-time quantitative polymerase chain reaction (QPCR) and Enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA and protein expression of MMP-9, respectively. We also examined the MMP-9 activity by gelatin zymography. The results showed that both of the PNG extract obtained from 10% ethanol extraction method (PNG-3) and purified Compound P (ginsenoside Rb1) showed significant inhibitory effect on MMP-9 expression and activity in H9c2 cells and HepG-2 cells.

We further examined the molecular mechanisms of the inhibitory effect of PNG-3. H9c2 and HepG-2 cells were pretreated with different kinase inhibitors followed by the activation by TNF-α. The results showed the protein kinase R (PKR) inhibitor could inhibit TNF-α induced MMP-9 in both of the two cell lines. Furthermore, the results of Western blot showed the PNG-3 suppressed the phosphorylation of eIF-2α which is a down-stream effector of PKR in TNF-α stimulated H9c2 and HepG-2 cells, respectively. Therefore, PNG-3 may act through PKR to regulate TNF-α induced MMP-9 activity.

In summary, bioactivity guided fractionation is an effective way of isolating bioactive compounds from medicinal herbs. In addition, PNG containing ginsenoside Rb1 may be a potential candidate of MMP-9 inhibition for the treatment of cardiac remodeling and cancer metastasis. / published_or_final_version / Paediatrics and Adolescent Medicine / Master / Master of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/207686
Date January 2014
CreatorsSun, Wentao, 孙文韬
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0017 seconds