Return to search

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird.
In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu.
Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt.
Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26151
Date09 October 2012
CreatorsSchmitz, Steffen
ContributorsBüchner, Bernd, Herlach, Dieter, Technische Universität Dresden
PublisherLeibniz-Institut für Festkörper- und Werkstoffforschung Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds