This thesis aimed to design and develop a novel micro-thermal electric generator (£g-TEG) with a transparent parallel-array bridge microstructure using the ANSYS finite element analysis software and Micro Electro Mechanical Systems (MEMS) technology. The presented £g-TEG can convert the temperature difference between the indoor and outdoor planes of building glass window into a useful electrical power. The thermoelectrically transferred output electrical power is suitable for recharging various mobile communication products.
Conventional £g-TEG presented a high fabrication cost, low integration compatibility with IC processes and non-transparent characteristics. To improve these disadvantages, this research utilizes a batch production surface micromachining technology to implement the Poly-Si based parallel-array £g-TEG on a transparent quartz glass substrate and the main fabrication processes adopted in this research are including six thin-film deposition processes and five photolithography processes.
The implemented Poly-Si based transparent £g-TEG has successfully demonstrates a maximum temperature difference of 1.38¢J between the hot plane (substrate) and cold plane (suspending microstructure), a maximum output voltage of 13.28 mV/cm2, a maximum output power of 110.22 nW/cm2 and a maximum light transmission of 40%.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0905111-005418 |
Date | 05 September 2011 |
Creators | Ma, Ling-Yu |
Contributors | Wei-Leun Fang, Ruey-Shing Huang, I-Yu Huang, Yu-Cheng Lin, Jin-Chern Chiou |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0905111-005418 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0025 seconds