Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-17082017-225043 |
Date | 03 March 2017 |
Creators | Bruno de Lessa Victor |
Contributors | Paulo Domingos Cordaro, Alexandre Kirilov, Paulo Leandro Dattori da Silva |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds