Return to search

Deep learning compact and invariant image representations for instance retrieval / Représentations compactes et invariantes à l'aide de l'apprentissage profond pour la recherche d'images par similarité

Nous avons précédemment mené une étude comparative entre les descripteurs FV et CNN dans le cadre de la recherche par similarité d’instance. Cette étude montre notamment que les descripteurs issus de CNN manquent d’invariance aux transformations comme les rotations ou changements d’échelle. Nous montrons dans un premier temps comment des réductions de dimension (“pooling”) appliquées sur la base de données d’images permettent de réduire fortement l’impact de ces problèmes. Certaines variantes préservent la dimensionnalité des descripteurs associés à une image, alors que d’autres l’augmentent, au prix du temps d’exécution des requêtes. Dans un second temps, nous proposons la réduction de dimension emboitée pour l’invariance (NIP), une méthode originale pour la production, à partir de descripteurs issus de CNN, de descripteurs globaux invariants à de multiples transformations. La méthode NIP est inspirée de la théorie pour l’invariance “i-theory”, une théorie mathématique proposée il y a peu pour le calcul de transformations invariantes à des groupes au sein de réseaux de neurones acycliques. Nous montrons que NIP permet d’obtenir des descripteurs globaux compacts (mais non binaires) et robustes aux rotations et aux changements d’échelle, que NIP est plus performants que les autres méthodes à dimensionnalité équivalente sur la plupart des bases de données d’images. Enfin, nous montrons que la combinaison de NIP avec la méthode de hachage RBMH proposée précédemment permet de produire des codes binaires à la fois compacts et invariants à plusieurs types de transformations. La méthode NIP+RBMH, évaluée sur des bases de données d’images de moyennes et grandes échelles, se révèle plus performante que l’état de l’art, en particulier dans le cas de descripteurs binaires de très petite taille (de 32 à 256 bits). / Image instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…

Identiferoai:union.ndltd.org:theses.fr/2016PA066406
Date08 July 2016
CreatorsMorère, Olivier André Luc
ContributorsParis 6, Racoceanu, Daniel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds