Depuis une vingtaine d’années, la résolution de problèmes d’optimisation globale non convexes avec contraintes a connu un formidable essor. Les algorithmes de branch and bound basée sur l’analyse d’intervalles ont su trouver leur place, car ils ont l’avantage de prouver l’optimalité de la solution de façon déterministe, avec un niveau de certitude pouvant aller jusqu’à la précision machine. Cependant, la complexité exponentielle en temps et en mémoire de ces algorithmes induit une limite intrinsèque, c’est pourquoi il est toujours nécessaire d’améliorer les techniques actuelles. Dans cette thèse, nous avons développé de nouvelles arithmétiques basées sur l’arithmétique d’intervalles et l’arithmétique affine, afin de calculer des minorants et des majorants de meilleure qualité de fonctions explicites sur un intervalle. Nous avons ensuite développé une nouvelle méthode automatique de construction de relaxations linéaires. Cette construction est basée sur l’arithmétique affine et procède par surcharge des opérateurs. Les programmes linéaires ainsi générés ont exactement le même nombre de variables et de contraintes d’inégalité que les problèmes originaux, les contraintes d’égalité étant remplacées par deux inégalités. Cette nouvelle procédure permet de calculer des minorants fiables et des certificats d’infaisabilité pour chaque sous-domaine à chaque itération de notre algorithme de branch and bound par intervalles. De nombreux tests numériques issus du site COCONUT viennent confirmer l’efficacité de cette approche. Un autre aspect de cette thèse a été l’étude d’une extension de ce type d’algorithmes en introduisant une limite sur mémoire disponible. L’idée principale de cette approche est de proposer un processus inverse de l’optimisation par le biais d’un principe métaheuristique : plutôt que d’améliorer des solutions locales à l’aide de métaheuristiques telles que les algorithmes Taboo ou VNS, nous partons d’une méthode exacte et nous la modifions en une heuristique. De cette façon, la qualité de la solution trouvée peut être évaluée. Une étude de la complexité de ce principe métaheuristique a également été effectuée. Enfin, pour finir l’étude, nous avons appliqué notre algorithme à la résolution de problème en géométrie plane, ainsi qu’à la résolution d’un problème de dimensionnement de moteur électrique. Les résultats obtenus ont permis de confirmer l’intérêt de ce type d’algorithme, en résolvant des problèmes ouverts sur les polygones convexes et proposant des structures innovantes en génie électrique. / Since about thirty years, interval Branch and Bound algorithms are increasingly used to solve constrained global optimization problems in a deterministic way. Such algorithms are reliable, i.e., they provide an optimal solution and its value with guaranteed bounds on the error, or a proof that the problem under study is infeasible. Other approaches to global optimization, while useful and often less time-consuming than interval methods, do not provide such a guarantee. However, the exponential complexity in time and memory of interval Branch and Bound algorithms implies a limitation, so it is always necessary to improve these methods. In this thesis, we have developed new arithmetics based on interval arithmetic and affine arithmetic, to compute better lower and upper bounds of a factorable function over an interval. An automatic method for constructing linear relaxations of constrained global optimization problems is proposed. Such a construction is based on affine and interval arithmetics and uses operator overloading. These linear programs have exactly the same numbers of variables and of inequality constraints as the given problems. Each equality constraint is replaced by two inequalities. This new procedure for computing reliable bounds and certificates of infeasibility is inserted into a classical interval Branch and Bound algorithm. Extensive computation experiments, made on a sample of test problems from the COCONUT database, prove its effectiveness. Another aspect is the study of an extension of such a global optimization code by limiting the available memory. The main idea of this new kind of metaheuristique is to propose a reverse process of optimization via heuristics : rather than improving local solutions by using metaheuristics such as Taboo or VNS, we begin with an exact method and we modify it into a heuristic one. In such a way, the quality of the solution could be evaluated. Moreover, a study of the complexity of this metaheurisque has been done. Finally, we applied our algorithm to solve open problem in geometry, and to solve a design problem of an electric motor. The results have confirmed the usefulness of this kind of algorithms, solving open problems on convex polygons and offering innovative structures in electrical engineering.
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0090 |
Date | 08 December 2010 |
Creators | Ninin, Jordan |
Contributors | Toulouse, INPT, Messine, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds