Lau, Fong Ting. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 73-77). / Abstracts in English and Chinese. / ABSTRACT --- p.III / 摘要 --- p.IV / PUBLICATIONS CORRESPOND TO THIS THESIS --- p.V / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENTS --- p.VIII / LIST OF FIGURES --- p.X / LIST OF TABLES --- p.XII / Chapter CHAPTER I. --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Unique Properties of Gold Nanoparticles Possess --- p.1 / Chapter 1.1.2 --- Synthesis of Gold Nanoparticles --- p.3 / Chapter 1.1.3 --- Aggregation or Agglomeration of Gold Nanoparticles --- p.4 / Chapter 1.1.4 --- Fabrication of Well-ordered Structures Using Gold Nanoparticles --- p.6 / Chapter 1.2 --- Objective --- p.7 / Chapter 1.3 --- Organization --- p.9 / Chapter CHAPTER II. --- ARCHITRCTURE OF AUTOMATED MICRO-ROBOTIC SPOTTING SYSTEM --- p.10 / Chapter 2.1 --- Micro-sized Capillary Probes --- p.12 / Chapter 2.1.1 --- Importance of Fabrication of Micron-sized Capillary Probe Tip --- p.12 / Chapter 2.1.2 --- Experimental Procedure of Fabrication of Capillary Probe --- p.14 / Chapter 2.1.3 --- Experimental Result of Fabrication of Capillary Probe --- p.15 / Chapter 2.2 --- Programmable X-Y-Z Manipulator --- p.16 / Chapter 2.3 --- Programmable Hydraulic Syringe Pump --- p.16 / Chapter 2.4 --- CCD Video Microscope System --- p.17 / Chapter 2.5 --- Chapter Conclusion --- p.17 / Chapter CHAPTER III. --- MANIPULATION OF UNMODIFIED GOLD NANOPARTICLES BY DIELECTROPHORESIS --- p.18 / Chapter 3.1 --- Methodology of Manipulation of Gold Nanoparticles --- p.18 / Chapter 3.1.1 --- Self-assembly of Crystals by Capillary Force Induced by Solvent Evaporation --- p.19 / Chapter 3.1.2 --- Position Control by Dielectrophoretic (DEP) Force --- p.21 / Chapter 3.2 --- Experimental Preparation and Setup --- p.22 / Chapter 3.2.1 --- Microelectrodes Fabrication --- p.22 / Chapter 3.2.2 --- Circuit --- p.23 / Chapter 3.2.3 --- Injection of Solution by Microspotting Technique --- p.24 / Chapter 3.3 --- Experimental Procedure --- p.24 / Chapter 3.4 --- Experimental Result --- p.24 / Chapter 3.4.1 --- Process of Crystal Formation by Combining the Capillary Force and DEP --- p.24 / Chapter 3.4.2 --- Position of Crystal Formed between Microelectrodes --- p.25 / Chapter 3.4.3 --- Yield of Crystal Formed between Microelectrodes by Varying Voltage Applied --- p.27 / Chapter 3.5 --- Surface Analyses --- p.29 / Chapter 3.5.1 --- Scanning Electron Microscopy and Energy-Disperse X-ray Spectroscopy Analysis --- p.30 / Chapter 3.5.2 --- Atomic Force Microscope Analysis --- p.31 / Chapter 3.6 --- Possibilities served as Humidity Sensors --- p.33 / Chapter 3.7 --- Chapter Conclusion --- p.35 / Chapter CHAPTER IV. --- THEORETICAL ANALYSES OF GOLD NANOPARTICLES MANIPULATION --- p.37 / Chapter 4.1 --- Structure of Gold nanoparticles - Presence of Stabilizing Ions --- p.37 / Chapter 4.2 --- Theoretical Force Analysis Acting on Gold Nanoparticles --- p.39 / Chapter 4.2.1 --- Governing Equations --- p.39 / Chapter 4.2.2 --- Experimental Analysis --- p.45 / Chapter 4.3 --- Concentration of Gold Nanoparticles in Gold Colloidal Solution --- p.47 / Chapter 4.4 --- Chapter Conclusion --- p.48 / Chapter CHAPTER V. --- MODIFICATION OF GOLD NANOPARTICLES SURFACE --- p.50 / Chapter 5.1 --- Working Principle of Surface Modification of Gold Nanoparticles --- p.50 / Chapter 5.2 --- Criteria of Choosing the Adsorbed Molecules for Chemisorption --- p.52 / Chapter 5.3 --- Experimental Procedures of Surface Modifications --- p.54 / Chapter 5.4 --- Experimental Result of Surface Modification of Gold Nanoparticles --- p.58 / Chapter 5.4.1 --- Effect of Concentration of Dodecanethiol --- p.58 / Chapter 5.4.2 --- Stability of Surface Modified Gold Nanoparticles --- p.59 / Chapter 5.5 --- Chapter Conclusion --- p.61 / Chapter CHAPTER VI. --- MANIPULATION OF MODIFIED GOLD NANOPARTICLES BY DIELECTROPHORESIS --- p.62 / Chapter 6.1 --- Experimental Setup --- p.62 / Chapter 6.2 --- Experimental Result --- p.63 / Chapter 6.2.1 --- Comparison between Modified and Unmodified Gold Nanoparticles --- p.63 / Chapter 6.2.2 --- Manipulation Experiments using Different Frequency --- p.64 / Chapter 6.3 --- PDMS Microfluidic Channel System --- p.68 / Chapter 6.3.1 --- System Design --- p.68 / Chapter 6.3.2 --- Fabrication --- p.68 / Chapter 6.4 --- Chapter Conclusion --- p.69 / Chapter CHAPTER VII. --- CONCLUSION --- p.71 / BIBLIOGRAPHY --- p.73
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326377 |
Date | January 2008 |
Contributors | Lau, Fong Ting., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xii, 77, [5] leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0015 seconds