Return to search

Structure, morphologie et activité catalytique des nanoparticules d'or supportées sur TiO2(110) : une étude in operando par GIXD et GISAXS au cours de l'oxydation du CO / Structure, morphology and catalytic activity of gold nanoparticles supported on TiO2 (110) : In operando study by GIXD and GISAXS during the CO oxidation

Ce travail porte sur l'étude in operando des nanoparticules d'or supportées sur TiO2(110) pendant la réaction d'oxydation du CO. Il s'inscrit dans l'objectif de comprendre les propriétés catalytiques de l'or qui apparaissent à l'échelle nanométrique. Les paramètres géométriques et structuraux des nanoparticules d'or ont été mesurés en présence de 20 mbar d'oxygène ou d'argon, de 0.1-0.2 mbar de CO et en conditions réactionnelles (oxygène + CO à 473 K), par GISAXS et par GIXD en suivant simultanément la composition des gaz par spectrométrie de masse. L'exposition au mélange réactionnel déclenche une évolution instantanée des nanoparticules avec une augmentation de leur taille moyenne qui varie de la même manière que l'activité catalytique. Par contre l'oxygène et le CO ne provoquent pas de changement et seule la température a un effet. Ces évolutions démontrent l'importance des mesures in operando pour déterminer le lien qui existe entre la taille et l'activité des nanoparticules. La variation de l'activité catalytique en fonction du diamètre présente un maximum pour des particules de 2 nm de diamètre et de 1.4 nm de hauteur. Au-dessus de ce maximum, elle suit une loi de puissance du diamètre, d-2.4 ± 0,3, comme attendu pour des sites actifs situés sur les atomes de basse coordinence. La diffraction X montre que, pendant la réaction, les nanoparticules conservent la structure CFC du cristal d'or, mais la distance inter-plan se contracte quand la taille des particules décroit ce qui intervient dans la baisse d'activité au dessous de 2 nm. Cependant d'autres paramètres peuvent aussi avoir un effet négatif sur la réactivité comme la forme des particules et le fait que plus elles sont petites plus elles s'agglomèrent sur les bords de marche du substrat. La similitude des tailles obtenues par GISAXS et par GIXD et de leur comportement sous gaz réactifs indique que les particules mesurées par ces deux techniques sont les mêmes. De plus, la forte corrélation entre la variation de l'activité et les évolutions observées par GISAXS montre que ce sont les particules actives qui sont sondés par les rayons x. La comparaison des résultats avec ceux déjà publiés indique que le comportement que nous avons décrit sur la dépendance de l'activité catalytique des nanoparticules d'or sur TiO2, pour l'oxydation du CO, est représentative des propriétés de ce système. Cependant, il est nécessaire de vérifier expérimentalement comment ces résultats obtenus à 473 K peuvent être extrapolés à température ambiante. L'installation dans notre dispositif d'une nouvelle chambre de réaction doit permettre de gagner un ordre de grandeur en sensibilité et rendre envisageable une telle étude. Mots clés : Catalyse, nanoparticules d'or, GISAXS, diffraction X, in operando, oxydation du CO. / This work focuses on the in operando study of gold NPs supported on TiO2(110) during the CO oxidation reaction. Its goal is the understanding of the catalytic properties of gold appearing at the nanometer scale. The geometrical and structural parameters of gold nanoparticles were measured in the presence of 20 mbar of oxygen or argon, of 0.1-0.2 mbar of CO and reaction conditions (oxygen + CO at 473 K), by GISAXS and GIXD, by simultaneously tracking the gas composition by mass spectrometry. Exposure to the reaction mixture triggers an instantaneous evolution of nanoparticles with an increase in their average size which varies in the same way that the catalytic activity. Contrariwise, oxygen and CO don't cause any changes and only the temperature has an effect. These evolutions show the importance of in operando measures to determine the relationship between the size and activity of nanoparticles. The variation of catalytic activity depending on the diameter exhibits a maximum for particles of 2 nm in diameter and 1.4 nm in height. Above this maximum, it follows a power law of the diameter, d-2.4 ± 0.3, as expected for active sites located on the atoms of low coordination number. X-ray diffraction shows that during the reaction, the nanoparticles retain the FCC structure of the gold crystal, but the inter-plane distance contracts when the particle size decreases, which leads to the drop of the activity below 2 nm. However, other parameters may also have a negative effect on reactivity, such as the particle shape and the fact that the smaller the particles, the more they congregate on the edges of the substrate step. The similarity of the sizes obtained by GISAXS and GIXD, and their behavior under reactant gases indicates that the particles measured by both techniques are the same. In addition, the strong correlation between the activity variation and the evolutions observed by GISAXS shows that the active particles are those scanned by the X rays. The comparison of our results with those already published shows that the behavior we have described on the dependence of the catalytic activity of gold nanoparticles on TiO2, for CO oxidation reaction, is representative of the properties of this system. However, it is necessary to check experimentally how the results obtained at 473 K can be extrapolated to room temperature. The installation of a new reaction chamber in our setup has to allow us to gain an order of magnitude in sensitivity and make possible such a study. Keywords: Catalysis, gold nanoparticles, GISAXS, X-ray diffraction, in operando, oxidation of CO

Identiferoai:union.ndltd.org:theses.fr/2011GRENY070
Date13 December 2011
CreatorsLaoufi, Issam
ContributorsGrenoble, Saint-Lager, Marie-Claire
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds