Return to search

PERFORMANCE OF GEOSYNTHETIC CLAY LINERS IN COVER, SUBSURFACE BARRIER, AND BASAL LINER APPLICATIONS

The use of geosynthetic clay liners (GCLs) as (i) covers for arsenic-rich gold mine tailings and landfills, (ii) subsurface barrier for migration of hydrocarbons in the Arctic, and (iii) basal liner for sewage treatment lagoons were examined.
After 4 years in field and laboratory experiments, it was found that best cover configuration above gold mine tailings might include a layer of GCL product with polymer-enhanced bentonite and a geofilm-coated carrier geotextile serving above the tailings under ≥ 0.7 m overburden. However, acceptable performance could be achieved with using a standard GCL with untreated bentonite provided that there is a minimum of 0.7 m of cover soil above the GCL.
When GCL samples were exhumed from experimental landfill test cover with complete replacement of sodium in the bentonite with divalent cations in the adjacent soil, it was observed that the (i) hydraulic head across the GCLs, (ii) size of the needle-punched bundles, and (iii) structure of the bentonite can all significantly affect the value of the inferred in-situ hydraulic conductivity measured at the laboratory. The higher the hydraulic head and the larger the size of the needle-punched bundles, the higher the likelihood of internal erosion/structural change of bentonite at bundles that will cause a preferential flow for liquids to occur. A key practical implication was that GCLs can perform effectively as a single hydraulic barrier in covers provided that the water head above the GCL kept low.
The hydraulic performance of a GCL in the Arctic was most affected by the location within the soil profile relative to the typical groundwater level with the highest increase in the hydraulic conductivity (by 1-4 orders of magnitude) for GCL below the water table. However, because the head required for jet fuel to pass through the GCL was higher than that present under field conditions, there was no evidence of jet fuel leakage through the barrier system.
The leakage through GCLs below concrete lined sewage treatment lagoons was within acceptable limits, in large part, due to the low interface transmissivity between GCLs and the overlying poured concrete. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2014-02-28 08:53:29.171

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/8641
Date28 February 2014
CreatorsHosney, Mohamed
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0517 seconds