An autonomous vehicle is a complex system that requires a good perception of the surrounding environment to operate safely. One part of that is multiple object tracking, which is an essential component in camera-based perception whose responsibility is to estimate object motion from a sequence of images. This requires an association problem to be solved where newly estimated object positions are mapped to previously predicted trajectories, for which different solution strategies exist. In this work, a multiple hypothesis tracking algorithm is implemented. The purpose is to demonstrate that measurement associations are improved compared to less compute-intensive alternatives. It was shown that the implemented algorithm performed 13 percent better than an intersection over union tracker when evaluated using a standard evaluation metric. Furthermore, this work also investigates the usage of abstraction layers to accelerate time-critical parallel operations on the GPU. It was found that the execution time of the tracking algorithm could be reduced by 42 percent by replacing four functions with implementations written in the purely functional array language Futhark. Finally, it was shown that a GPU code abstraction layer can reduce the knowledge barrier required to write efficient CUDA kernels.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-185996 |
Date | January 2022 |
Creators | Nolkrantz, Marcus |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.3201 seconds