De nos jours, une gestion optimale de l'énergie électrique est devenue un enjeu majeur. La conversion de l'énergie entre une source et sa charge est réalisée par un élément central : le convertisseur statique utilisé aussi bien pour des faibles puissances (quelques Watts) que pour des très fortes (plusieurs MWatt). La brique élémentaire est la cellule de commutation constituée de semi-conducteurs de puissance (à commutation commandée ou spontanée) généralement réunis au sein d'un " module de puissance ". La nécessaire réduction des volumes dans certaines applications (comme les systèmes embarqués par exemple) ainsi que l'augmentation des calibres de tensions des nouveaux semi- conducteurs grands gaps auront comme conséquence directe d'augmenter les contraintes sur les systèmes d'isolation des convertisseurs. Une répartition contrôlée de ces contraintes dans le volume présente alors un intérêt pour maintenir la fiabilité du système d'isolation. Il est donc nécessaire d'effectuer une caractérisation la plus large possible de l'ensemble des matériaux isolants utilisés dans le packaging des dits " modules de puissance ", ainsi qu'une bonne compréhension de leurs mécanismes de défaillances. Le travail présenté ici consiste en l'étude d'une nouvelle stratégie de répartition du potentiel dans le volume appelée gradation de potentiel. L'isolation de volume développée est un assemblage multicouche constitué d'un matériau à conductivité contrôlée (Epoxy/Graphene) jouant le rôle de gradateur et d'une fine couche isolante (parylène) assurant la tenue en tension. Différents outils, tant théoriques (simulation) qu'expérimentaux, ont été ainsi utilisés pour aider au dimensionnent du système d'isolation électrique. La modélisation par la méthode des éléments finis (MEF) permet-elle de prédéterminer la répartition de la contrainte (potentiel et champ électrique) dans une structure de test prédéfini ou de décrire l'étude de l'influence de la conductivité du matériau gradateur et de l'épaisseur du film sur la répartition des équipotentielles. D'un point de vue expérimental le film sélectionné a été caractérisé pour des épaisseurs comprises entre 10 et 40 µm. Le matériau à conductivité contrôlée a été ensuite élaboré puis caractérisé pour différents taux de chargement. Après l'incorporation du système d'isolation dans différentes structures tests (substrats métallisés et structure double face), différentes méthodes permettant de caractériser le système d'isolation ont été utilisées qu'il s'agisse de mesures directes de la contrainte électrique par sonde à champ nul (potentiel de surface) ou indirectes par des mesures de décharges partielles. L'isolation multi-couches présente des améliorations dans la répartition du potentiel mais aussi des limites d'utilisation en fonction de la conductivité du matériau gradateur. Cette isolation doit donc être dimensionnée au plus près des caractéristiques d'utilisation et offre une approche intéressante pour le dimensionnement des modules de puissances double face. / Nowadays, an optimal management of the electrical energy becomes a key point in electric systems. The conversion of energy is realized by a main component: the power converter. It is used as well for low power (few Watts) as for very high power (MWatts). The elementary block of the converters, is the switching cell made up of semiconductor power devices. The trend to reduce both the volume and the weight in many applications (for example in embedded systems) and the increase of the rating voltage of the new wide band gap semiconductors will have for consequence an increase of the stresses on the electrical insulating systems of the power module . A controlled grading of these electrical constraints in the volume is highly interesting to ensure the reliability of the system. It is therefore necessary to perform a precise characterization of the insulated materials used in the packaging of the power modules, as well as to get a good understanding of their failures mechanisms. The works presented in this dissertation consists in the study of a new strategy for the field gradation in power modules. The proposed insulation is an assembly of multi-layers made up of a thick material of electrically controlled conductivity (Epoxy/Graphene nanocomposite) and of a thin insulating layer (Parylene films). Various tools were used (both theoretical and experimental) to help dimensioning of the Electrical Insulation System (EIS). The Finite Element Method (FEM) was used to simulate the equipotential and field distribution in the structure under study and to analyse on one hand, the influence of the changes in the conductivity values of the Epoxy/Graphene nanocomposite materials and, on the other hand, the impact of the parylene (PA) films thickness on the stress grading. From an experimental point of view, the PA films were characterized for different thicknesses ranging between 10 µm and 40 µm. The Epoxy/Graphene nanocomposites of controlled conductivity were manufactured and characterized (0 to 5 % wt) for various filler contents. The field grading effects were evaluated directly in different structures thanks to surface potential measurements and (indirectly) to partial discharges measurements. The proposed multilayer EIS exhibits some improvements regarding the stress grading but also some limits depending on the conductivity of the nanocomposite. Such an EIS will have to be dimensioned taking into account the rating voltage and could offer an interesting approach for the future design of the power modules.
Identifer | oai:union.ndltd.org:theses.fr/2017TOU30221 |
Date | 23 January 2017 |
Creators | Pelvillain, Cyril |
Contributors | Toulouse 3, Lebey, Thierry, Valdez Nava, Zarel, Diaham, Sombel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds