Curved graphene nanoribbons (GNRs) with hybrid edge structures have recently attracted increasing attention due to their unique band structures and electronic properties as a result of their nonplanar conformation. This work reports the solution synthesis of a long and curved multi-edged GNR (cMGNR) with unprecedented cove–armchair–gulf edge structures. The synthesis involves an efficient A2B2-type Diels–Alder polymerization between a diethynyl-substituted prefused bichrysene monomer (3b) and a dicyclopenta[e,l]pyrene-5,11-dione derivative (6) followed by FeCl3-mediated Scholl oxidative cyclodehydrogenation of the obtained polyarylenes (P1). Model compounds 1a and 1b are first synthesized to examine the suitability and efficiency of the corresponding polymers for the Scholl reaction. The successful formation of cMGNR from polymer P1 bearing prefused bichrysene units is confirmed by FTIR, Raman, and solid-state NMR analyses. The cove-edge structure of the cMGNR imparts the ribbon with a unique nonplanar conformation as revealed by density functional theory (DFT) simulation, which effectively enhances its dispersibility in solution. The cMGNR has a narrow optical bandgap of 1.61 eV, as estimated from the UV–vis absorption spectrum, which is among the family of low-bandgap solution-synthesized GNRs. Moreover, the cMGNR exhibits a carrier mobility of ≈2 cm2 V−1 s−1 inferred from contact-free terahertz spectroscopy.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89508 |
Date | 22 April 2024 |
Creators | Yang, Lin, Zheng, Wenhao, Osella, Silvio, Droste, Jörn, Komber, Hartmut, Liu, Kun, Böckmann, Steffen, Beljonne, David, Hansen, Michael Ryan, Bonn, Mischa, Wang, Hai I., Liu, Junzhi, Feng, Xinliang, Ma, Ji |
Publisher | Wiley-VCH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 2198-3844, 2200708, 10.1002/advs.202200708, info:eu-repo/grantAgreement/European Commission/H2020 | SGA-RIA/881603//Graphene Flagship Core Project 3/Graphene Core 3, info:eu-repo/grantAgreement/European Commission/H2020 | MSCA-ITN-ETN/813036//Bottom-Up generation of atomicalLy precise syntheTIc 2D MATerials for high performance in energy and Electronic applications – A multi-site innovative training action/ULTIMATE, info:eu-repo/grantAgreement/European Commission/H2020 | ERC | ERC-COG/819698//Development of Thiophene Based Conjugated Polymers in Two Dimensions/T2DCP, info:eu-repo/grantAgreement/European Commission/H2020 | RIA/101017821//MULTI-ELECTRON PROCESSES FOR LIGHT DRIVEN ELECTRODES AND ELECTROLYTES IN CONVERSION AND STORAGE OF SOLAR ENERGY/LIGHTCAP |
Page generated in 0.0022 seconds