Massive gravity is an extension of general relativity where the graviton, which mediates gravitational interactions, has a non-vanishing mass. The first steps towards formulating a theory of massive gravity were made by Fierz and Pauli in 1939, but it took another 70 years until a consistent theory of massive gravity was written down. This thesis investigates the phenomenological implications of this theory, when applied to cosmology. In particular, we look at cosmic expansion histories, structure formation, integrated Sachs-Wolfe effect and weak lensing, and put constraints on the allowed parameter range of the theory. This is done by using data from supernovae, the cosmic microwave background, baryonic acoustic oscillations, galaxy and quasar maps and galactic lensing. The theory is shown to yield both cosmic expansion histories, galactic lensing and an integrated Sachs-Wolfe effect consistent with observations. For the structure formation, however, we show that for certain parameters of the theory there exists a tension between consistency relations for the background and stability properties of the perturbations. We also show that a background expansion equivalent to that of general relativity does not necessarily mean that the perturbations have to evolve in the same way. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-113076 |
Date | January 2015 |
Creators | Enander, Jonas |
Publisher | Stockholms universitet, Fysikum, Stockholm : Department of Physics, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds