Return to search

Unraveling molecular, cellular and cognitive defects in the mouse model for mental retardation caused by Rsk2 gene mutation

Coffin-Lowry Syndrome (CLS), an X-linked form of intellectual disability, is caused by mutations of the RPS6KA3 gene encoding the growth factor regulated kinase RSK2. To understand the consequences of RSK2 deficiency in the hippocampus we performed a comparison of the hippocampal gene expression profiles from Rsk2-KO and WT mice. It revealed differentialexpression of 100 genes, encoding proteins acting in various biological pathways. We further analyzed the consequences of deregulation of one of these genes, Gria2 encoding GluR2, a subunit of the glutamate AMPAR. An abnormal two-fold increased expression of GluR2 was found in the hippocampus of Rsk2-KO mice. Electrophysiology studies showed a reduction of basal AMPAR and NMDAR mediated transmission, in the hippocampus of Rsk2-KO mice. Activity of ERK1/2 was also abnormally increased in the adult hippocampus of Rsk2-KO mice. P-Sp1 level was also significantly higher in RSK2 deficient cells. Together, my results suggested that over expression of GluR2 in RSK2 deficient cells, is caused by increased Sp1 transcriptional activity on the Gria2 gene, which, itself, is the result of ERK1/2 increased signaling.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00868704
Date24 February 2012
CreatorsMehmood, Tahir
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds