Return to search

Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu. / Kinetic treatment of a many-body system described by the fermionic chiral Gross-Neveu model.

Uma técnica de projeção é usada para tratar o problema de condição inicial na teoria quântica de campos. Neste formalismo, equações de movimento do tipo cinético são deduzidas para o conjunto de variáveis dinâmicas de um corpo. Estas equações são submetidas a uma expansão não perturbativa. Tratamos esta expansão em ordem mais baixa, correspondente a aproximacão de campo médio, para um sistema uniforme de muitos fermions fora do equilíbrio descrito pelo modelo fermiônico quiral de gross-neveu. Nesta aproximação recuperamos os resultados existentes na literatura, tais como, geração dinâmica de massa, liberdade assintótica e o fenômeno de transmutação dimensional. Estudando ainda nesta aproximção o regime de pequenas oscilações em torno do equilíbrio, obtemos soluções analíticas para a evolução dinâmica de nossas variáveis. Verificamos também as condições para existencias de estados ligados neste regime. / A time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15102012-122148
Date06 April 1995
CreatorsNatti, Paulo Laerte
ContributorsPiza, Antonio Fernando Ribeiro de Toledo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds