Spelling suggestions: "subject:"deoria dde muitos corpos"" "subject:"deoria dee muitos corpos""
1 |
Aplicações da álgebra de quons a sistemas de muitos corposDuzzioni, Eduardo Inácio January 2003 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Física. / Made available in DSpace on 2012-10-21T02:06:18Z (GMT). No. of bitstreams: 0 / Os quons são partículas que obedecem a estatísticas intermediárias entre as estatísticas de Bose e de Fermi. O que fazemos neste trabalho é apresentar um método para se construir de maneira sistemática uma base de muitos corpos quônica restrita ao subespaço anti-simétrico do espaço quônico total. Feito isto, consideramos o hamiltoniano de Lipkin para N quons, onde discutimos o efeito do parâmetro de deformação q na energia do estado fundamental, obtida pelo método de Hartree-Fock e na energia de excitação, obtida pelos métodos de R.P.A. e Tamm-Dancoff. O efeito do parâmetro q é tornar as partículas do sistema menos ligadas.
|
2 |
Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu. / Kinetic treatment of a many-body system described by the fermionic chiral Gross-Neveu model.Natti, Paulo Laerte 06 April 1995 (has links)
Uma técnica de projeção é usada para tratar o problema de condição inicial na teoria quântica de campos. Neste formalismo, equações de movimento do tipo cinético são deduzidas para o conjunto de variáveis dinâmicas de um corpo. Estas equações são submetidas a uma expansão não perturbativa. Tratamos esta expansão em ordem mais baixa, correspondente a aproximacão de campo médio, para um sistema uniforme de muitos fermions fora do equilíbrio descrito pelo modelo fermiônico quiral de gross-neveu. Nesta aproximação recuperamos os resultados existentes na literatura, tais como, geração dinâmica de massa, liberdade assintótica e o fenômeno de transmutação dimensional. Estudando ainda nesta aproximção o regime de pequenas oscilações em torno do equilíbrio, obtemos soluções analíticas para a evolução dinâmica de nossas variáveis. Verificamos também as condições para existencias de estados ligados neste regime. / A time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.
|
3 |
Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu. / Kinetic treatment of a many-body system described by the fermionic chiral Gross-Neveu model.Paulo Laerte Natti 06 April 1995 (has links)
Uma técnica de projeção é usada para tratar o problema de condição inicial na teoria quântica de campos. Neste formalismo, equações de movimento do tipo cinético são deduzidas para o conjunto de variáveis dinâmicas de um corpo. Estas equações são submetidas a uma expansão não perturbativa. Tratamos esta expansão em ordem mais baixa, correspondente a aproximacão de campo médio, para um sistema uniforme de muitos fermions fora do equilíbrio descrito pelo modelo fermiônico quiral de gross-neveu. Nesta aproximação recuperamos os resultados existentes na literatura, tais como, geração dinâmica de massa, liberdade assintótica e o fenômeno de transmutação dimensional. Estudando ainda nesta aproximção o regime de pequenas oscilações em torno do equilíbrio, obtemos soluções analíticas para a evolução dinâmica de nossas variáveis. Verificamos também as condições para existencias de estados ligados neste regime. / A time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.
|
Page generated in 0.0541 seconds