Return to search

Investigation of the diffusion mechanisms of several hydrocarbons in the Metal-Organic-Framework Zn(tbip)

Most of the computer simulations of molecules in Metal-Organic Frameworks (MOFs) to be found in the literature are done with rigid framework. But, Molecular Dynamics (MD) simulations of the self-diffusivity, Ds, of ethane within the one-dimensional 4.5 Å channels of the MOF type Zn(tbip)(H2 tbip = 5-tert-butyl isophthalic acid) presented in this work have shown not only quantitative, but also qualitative, differences in the Ds values for fixed and flexible lattices. Particularly, the dependence of Ds upon the concentration of molecules, c, is strongly influenced by the lattice flexibility. The reasons for this influence are investigated with the aid of probability density plots, free energy landscapes and barriers, along with a determination of the structural changes accompanying increasing c. It is found that for flexible lattices, the tighter, more constrained parts of the channels become wider at higher c; this allows more molecules to diffuse in the central region of the channels.

The investigations for Zn(tbip) have been extended to three equimolar mixtures of ethane/ethane, CO2/ethane and CO2/methanol. The simulations take into account the lattice flexibility. The diffusional characteristics are discussed in relation to molecule properties and lattice geometry. The results show that Zn(tbip) may be a useful material for separating methane/ethane and CO2/ethane mixtures at low concentrations, and CO2/methanol mixtures at high concentrations.

The temperature and concentration dependence of the self-diffusivity of propane diffusion in Zn(tbip) have been investigated as well by performing normal MD and hyper-MD with bias potential simulations. The obtained temperature dependence of the self-diffusivities is analyzed using an Arrhenius relationship, yielding the activation energy to be 9.53 kJ/mol and the pre-exponential factor to be 4.48×10-9 m2s-1. Using this hyper-MD method, interesting mechanisms of the propane molecules able to pass each other and exchange their sites in the channels can be observed. Because of mutual hindrance of propane molecules, the propane self-diffusivities decrease with increasing concentration.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-68125
Date09 May 2011
CreatorsSeehamart, Kompichit
ContributorsUniversität Leipzig, Fakultät für Physik und Geowissenschaften/ Institut für Theoretische Physik, Prof. Dr. Jörg Kärger, Prof. Dr. Jörg Kärger, Prof. Dr. Berend Smit
PublisherUniversitätsbibliothek Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0023 seconds