Le traitement des données manquantes est un sujet en pleine expansion en épidémiologie. La méthode la plus souvent utilisée restreint les analyses aux sujets ayant des données complètes pour les variables d'intérêt, ce qui peut réduire lapuissance et la précision et induire des biais dans les estimations. L'objectif de ce travail a été d'investiguer et d'appliquer une méthode d'imputation multiple à des données transversales d'enquêtes épidémiologiques et de systèmes de surveillance de maladies infectieuses. Nous avons présenté l'application d'une méthode d'imputation multiple à des études de schémas différents : une analyse de risque de transmission du VIH par transfusion, une étude cas-témoins sur les facteurs de risque de l'infection à Campylobacter et une étude capture-recapture estimant le nombre de nouveaux diagnostics VIH chez les enfants. A partir d'une base de données de surveillance de l'hépatite C chronique (VHC), nous avons réalisé une imputation des données manquantes afind'identifier les facteurs de risque de complications hépatiques graves chez des usagers de drogue. A partir des mêmes données, nous avons proposé des critères d'application d'une analyse de sensibilité aux hypothèses sous-jacentes àl'imputation multiple. Enfin, nous avons décrit l'élaboration d'un processus d'imputation pérenne appliqué aux données du système de surveillance du VIH et son évolution au cours du temps, ainsi que les procédures d'évaluation et devalidation.Les applications pratiques présentées nous ont permis d'élaborer une stratégie de traitement des données manquantes, incluant l'examen approfondi de la base de données incomplète, la construction du modèle d'imputation multiple, ainsi queles étapes de validation des modèles et de vérification des hypothèses.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00713926 |
Date | 06 April 2012 |
Creators | Héraud Bousquet, Vanina |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds