Les structures intelligentes sont de plus en plus présentes dans différentes industries et notamment dans les domaines de l'aéronautique et du génie civil. Ces structures sont dotées de fonctions qui leur permettent d'interagir avec leur environnement, d'adapter leurs caractéristiques structurelles (raideur, amortissement, viscosité, etc.) selon les besoins ou de surveiller leur état de santé ou « SHM » (Structural Health Monitoring). Aujourd’hui, les performances des méthodes de contrôle actif peuvent être considérablement dégradées lors de l’apparition d’endommagement. Le contrôle actif tolérant aux dommages ou « DTAC » (Damage Tolerant Active Control) est un champ de recherche récent qui s'intéresse à l'élaboration d'approches intégrées pour réduire les vibrations tout en surveillant l'intégrité de la structure, en identifiant les éventuels dommages, et en reconfigurant la loi de commande.Cette thèse apporte une contribution au DTAC en proposant une approche originale basée sur la norme H∞ modale . Les méthodes proposées se focalisent principalement sur le cas où plusieurs actionneurs et capteurs piézoélectriques non-collocalisés sont utilisés pour atténuer les vibrations des structures endommagées. Le manuscrit comprend quatre parties principales. Le chapitre 2 présente des rappels sur la commande H∞ et sur sa solution sous optimale obtenue par une approche par inégalité matricielle ou « LMI » (Linear Matrix Inequality), sur lesquels s’appuient les développements proposés dans ce travail. Le chapitre 3 décrit la norme H∞ modale introduite pour le contrôle actif des vibrations. Cette commande présente une sélectivité modale élevée, permettant ainsi de se concentrer sur les effets du dommage tout en bénéficiant des propriétés de robustesse qu'offre la commande H∞ vis-à-vis du spillover et des variations de paramètres. Une nouvelle stratégie de rejet des vibrations est proposée au chapitre 4. C'est une approche dite préventive où une prise en compte lors de l'élaboration de la commande H∞ modale, des zones fortement contraintes de la structure, où le risque d’endommagement est élevé est réalisée. Un algorithme SHM est proposé afin d'évaluer la sévérité du dommage pour chaque mode. Le chapitre 5 propose une nouvelle approche modale à double boucle de commande pour faire face à des endommagements imprévisibles. Un premier correcteur est conçu dans ce but pour satisfaire les contraintes de performance et de robustesse sur la structure saine, tandis que le second a pour objectif de conserver un contrôle satisfaisant quand un dommage survient. La loi de commande s'appuie sur un observateur d’état et d'un algorithme SHM pour reconfigurer en ligne le correcteur. Toutes les approches DTAC proposées sont testées en utilisant des simulations (analytiques et éléments finis) et/ou des expérimentations sur des structures intelligentes. / Smart structures have increasingly become present in different industry applications and particularly in the fields of aeronautics and civil engineering. These structures have features that allow interactions with the environment, adapting their characteristics according to the needs (stiffness, damping, viscosity, etc.), monitoring their health or controlling their vibrations. Today smart structure active control methods do not respond appropriately to damage, despite the capacity of external disturbances good rejection. Damage-tolerant active control (DTAC) is a recent research area that aims to develop integrated approaches to reduce the vibrations while monitoring the integrity of the structure, identifying damage occurrence and reconfiguring the control law of the adopted active vibration control method.This thesis contributes to DTAC area, proposing a novel modal control framework and some applying strategies. Developed methods focus in non-collocated flexible structures, where multiples piezoelectric sensors and actuators are used to attenuate damaged structure vibration. The chapters present four main topics and the conclusions. Chapter 2 reviews the regular suboptimal H∞ problem and its respective solution based on the linear matrix inequality (LMI) approach, which is a fundamental tool for the development of subsequent topics. Chapter 3 introduces the modal H∞-norm based method for vibration control, which reveals high modal selectivity, allowing control energy concentration on damage effects and presenting robustness to spillover and parameter variation. A new control strategy is developed in Chapter 4, taking into account existing knowledge about the structure stressed regions with high probability of damage occurrence, leading to specific requirements in the modal H∞ controller design. A structural health monitoring (SHM) technique assesses each damaged mode behavior, which is used to design a preventive controller. Chapter 5 presents a novel modal double-loop control methodology to deal with the unpredictability of damage, nevertheless ensuring a good compromise between robustness and performance to both healthy and damaged structures. For this purpose, the first loop modal controller is designed to comply with regular requirements for the healthy structure behavior, and the second loop controller is reconfigured aiming to ensure satisfactory performance and robustness when and if damage occurs, based on a state-tracking observer and an SHM technique to adapt the controller online. In all these chapters, simulated (analytical and finite elements based) and/or experimental aluminum structures are used to examine the proposed methodology under the respective control strategies. The last chapter subsumes the achieved results for each different approach described in the previous chapters.
Identifer | oai:union.ndltd.org:theses.fr/2016ENAM0032 |
Date | 15 September 2016 |
Creators | Genari, Helói Francico Gentil |
Contributors | Paris, ENSAM, Universidade estadual de Campinas (Brésil), Coffignal, Gérard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds