Return to search

Fossils of the distant Galaxy: NGC 5466 and its stellar stream

The stellar halo of the Milky Way is populated by mostly old and metal-poor stars. As dynamical timescales are of order ~Gyrs at these large distances, accreted stellar substructures, such as dwarf galaxies or globular clusters, survive here as coherent entities longer than anywhere else in the Galaxy. These substructures represent our “fossil record” which can be used to reconstruct the Galaxy’s complex past. In this work, we seek to identify the structures found in the far reaches of the stellar halo as a step towards a correct interpretation of this fossil record. The advent of all-sky surveys in the Gaia era has ignited a prosperous period for this field of Galactic archaeology, but exploring the distant Milky Way (>10 kpc) with Gaia is difficult. Parallax measurements are much less accurate beyond the Solar neighborhood, though Gaia’s proper motions remain useful out to large radii.


To push Gaia into the distant Galaxy, we combined these astrometric data with u-band photometry from the Canada-France Imaging Survey (CFIS). We exploited CFIS’ excellent photometric quality and depth (which extends 3 magnitudes deeper than that of the Sloan Digital Sky Survey) to use blue horizontal branch stars (BHBs) as a tracer population with well-measured distances. We first examined the distribution of BHBs using the OPTICS (Ordering Points To Identify the Clustering Structure) clustering algorithm to visualize the hierarchical nature of outer halo substructure. We then identified several well-known satellites, including a group of stars in the vicinity of a distant globular cluster (NGC 5466). Analysis of their kinematics suggested a few of these BHBs outside the cluster’s tidal radius were co-moving with NGC 5466, implying they may be tidal debris from this system. Interestingly, a stream had previously been detected extending from this globular cluster. However, its properties had not been studied in the decade since its discovery, and previous dynamical models were unable to reproduce many of the reported features. As one of the (allegedly) longest globular cluster streams on the sky - and given its distance and utility to constrain the Milky Way’s mass at large Galactic radius - we sought to explore this structure further.


We subsequently used red giant branch stars (RGBs) identified in CFIS to try to better quantify the characteristics of the putative stream. We were able to filter these data and obtain a sample of stars that are fully consistent with stream membership and which span approximately 31 degrees of sky. Combined with the BHBs, we used these populations to trace the path of the stream, its distance and distance gradient across the stream’s longitude, and additionally estimated a lower limit to the stream’s luminosity. Our measurements suggest that the stream is at least 11% of the luminosity of the cluster.


We then compared our observational data to dynamical models, which showed generally good agreement with the observed stream. This success reflects the updated properties of data measured in this work, and the inclusion of new data (especially proper motions). Our model suggests that the pericenter and apocenter of NGC 5466's orbit are 6.4 and 43 kpc, respectively, resulting in a very eccentric orbit (ε = 0.74). We also find evidence that the cluster experienced a recent interaction (within the past ~100 Myrs) with the Galactic disk, suggesting that the primary source of mass loss in this system may be caused by disk-shocking. The NGC 5466 stellar stream also exhibits an interesting heliocentric gradient in the leading arm, which our simplistic spherical halo model does not fully reproduce. Dynamical experiments with various halo shapes fit to this stream will prove interesting for future work. For local cosmology in particular, long, thin, dynamically cold stellar streams are ideal systems for constraining properties of the Milky Way’s dark matter halo, and streams at large radius are especially useful for measuring the Galaxy's mass interior to the stream. In this respect, we anticipate that NGC 5466 will be exceptionally useful as a probe of the shape, mass, and dark substructure of the Milky Way's distant dark matter halo. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/12440
Date07 December 2020
CreatorsJensen, Jaclyn
ContributorsMcConnachie, Alan, Ellison, Sara L.
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0022 seconds